Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 41847 by maxmathsup by imad last updated on 13/Aug/18

let f(x) = ∫_0 ^(π/4)      (dt/(x +tan(t)))  1) find anoher expression off (x)  2) calculate  ∫_0 ^(π/4)   (dt/(2+tan(t)))   and  A(θ) = ∫_0 ^(π/4)     (dt/(sinθ+tant))  3) calculate  ∫_0 ^(π/4)     (dt/((1+tant)^2 ))

letf(x)=0π4dtx+tan(t)1)findanoherexpressionoff(x)2)calculate0π4dt2+tan(t)andA(θ)=0π4dtsinθ+tant3)calculate0π4dt(1+tant)2

Answered by maxmathsup by imad last updated on 14/Aug/18

1) we have  f(x) = ∫_0 ^(π/4)      (dt/(x+tant))  changement tant =u give  f(x) = ∫_0 ^1       (du/((1+u^2 )(x+u)))  let decompose F(u) = (1/((x+u)(1+u^2 )))  F(u) =(a/(x+u)) +((bu +c)/(u^2  +1))  a =lim_(u→−x) (x+u)F(u) = (1/(1+x^2 ))  lim_(u→+∞) uF(u) =0 =a +b ⇒b=−(1/(1+x^2 )) ⇒F(u)=(1/((1+x^2 )(u+x))) +((−(1/(1+x^2 ))u +c)/(u^2  +1))  F(0) =(1/x) = (1/(x(1+x^2 ))) +c ⇒1 =(1/(1+x^2 )) +xc ⇒xc =1−(1/(1+x^2 )) ⇒  xc =(x^2 /(1+x^2 )) ⇒ c =(x/(1+x^2 ))  ( we suppose x≠0) ⇒  F(u) =  (1/((1+x^2 )(u+x))) −(1/(1+x^2 ))   ((u−x)/(u^2  +1)) ⇒  f(x) = (1/(1+x^2 )) {    ∫_0 ^1    (du/(u+x)) −(1/2)∫_0 ^1     ((2u)/(u^2  +1))du  +x ∫_0 ^1    (du/(1+u^2 ))}  =(1/(1+x^2 )){  [ln∣u+x∣_0 ^1  −(1/2)[ln∣u^2  +1∣]_0 ^1     +x [arctanu ]_0 ^1 }  f(x)=(1/(1+x^2 )){ ln∣1+x∣−ln∣x∣ −(1/2)ln(2) +((πx)/4)}

1)wehavef(x)=0π4dtx+tantchangementtant=ugivef(x)=01du(1+u2)(x+u)letdecomposeF(u)=1(x+u)(1+u2)F(u)=ax+u+bu+cu2+1a=limux(x+u)F(u)=11+x2limu+uF(u)=0=a+bb=11+x2F(u)=1(1+x2)(u+x)+11+x2u+cu2+1F(0)=1x=1x(1+x2)+c1=11+x2+xcxc=111+x2xc=x21+x2c=x1+x2(wesupposex0)F(u)=1(1+x2)(u+x)11+x2uxu2+1f(x)=11+x2{01duu+x12012uu2+1du+x01du1+u2}=11+x2{[lnu+x0112[lnu2+1]01+x[arctanu]01}f(x)=11+x2{ln1+xlnx12ln(2)+πx4}

Commented by maxmathsup by imad last updated on 14/Aug/18

2)  ∫_0 ^(π/4)     (dt/(2 +tan(t))) =f(2) = (1/5){ ln(3)−ln(2)−(1/2)ln(2) +(π/2)}  =(1/5){ ln(3)−(3/2)ln(2) +(π/2)}  also we have  ∫_0 ^(π/4)     (dt/(sinθ +tant)) =f(sinθ) =(1/(1+sin^2 θ)){ ln(1+sin^2 θ)−ln∣sinθ∣−(1/2)ln(2)+((πsinπ)/4)}

2)0π4dt2+tan(t)=f(2)=15{ln(3)ln(2)12ln(2)+π2}=15{ln(3)32ln(2)+π2}alsowehave0π4dtsinθ+tant=f(sinθ)=11+sin2θ{ln(1+sin2θ)lnsinθ12ln(2)+πsinπ4}

Commented by maxmathsup by imad last updated on 14/Aug/18

3) we have  f^′ (x) =− ∫_0 ^(π/4)     (dt/((x+tant)^2 )) ⇒∫_0 ^(π/4)   (dt/((x+tant)^2 )) =−f^′ (x)  but  (1+x^2 )f(x) =ln∣1+x∣ −ln∣x∣ −((ln(2))/2) +((πx)/4)    by derivation  2xf(x) +(1+x^2 )f^′ (x)= (1/(1+x)) −(1/x) +(π/4) ⇒  2 f(1) +2 f^′ (1) = (1/2) −1 +(π/4) =−(1/2) +(π/4) ⇒f(1) +f^′ (1) =−(1/4) +(π/8) ⇒  f^′ (1) =(π/8) −(1/4) −f(1)  and   ∫_0 ^(π/4)     (dt/((1+tant)^2 )) =−f^′ (1) =−(π/8) +(1/4) +f(1)  =−(π/8) +(1/4)  +(1/2){ln(2)−(1/2)ln(2) +(π/4)}=−(π/8) +(1/4) +((ln(2))/4) +(π/8)  =(1/4) +((ln(2))/4) .

3)wehavef(x)=0π4dt(x+tant)20π4dt(x+tant)2=f(x)but(1+x2)f(x)=ln1+xlnxln(2)2+πx4byderivation2xf(x)+(1+x2)f(x)=11+x1x+π42f(1)+2f(1)=121+π4=12+π4f(1)+f(1)=14+π8f(1)=π814f(1)and0π4dt(1+tant)2=f(1)=π8+14+f(1)=π8+14+12{ln(2)12ln(2)+π4}=π8+14+ln(2)4+π8=14+ln(2)4.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com