Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67744 by mathmax by abdo last updated on 31/Aug/19

let f(x) =∫_0 ^∞   ((sin(t^2 ))/((x^2  +t^2 )^2 ))dt  with x>0  1)determine a explicit form for f(x)  2) find  also g(x) =∫_0 ^∞   ((sin(t^2 ))/((x^2  +t^2 )^3 ))dt  3) give f^((n)) (x) at form of integral and calculate f^((n)) (1).  4) find the valueof ∫_0 ^∞   ((sin(t^2 ))/((1+t^2 )^2 )) dt and ∫_0 ^∞   ((sin(t^2 ))/((1+t^2 )^3 ))dt

letf(x)=0sin(t2)(x2+t2)2dtwithx>01)determineaexplicitformforf(x)2)findalsog(x)=0sin(t2)(x2+t2)3dt3)givef(n)(x)atformofintegralandcalculatef(n)(1).4)findthevalueof0sin(t2)(1+t2)2dtand0sin(t2)(1+t2)3dt

Commented by mathmax by abdo last updated on 31/Aug/19

1) we have f(x)=∫_0 ^∞   ((sin(t^2 ))/((x^2 +t^2 )^2 ))dt cha7gement  t=xu give  f(x) =∫_0 ^∞   ((sin(x^2 u^2 ))/(x^4 (1+u^2 )^2 )) xdu =(1/x^3 ) ∫_0 ^∞    ((sin(x^2 u^2 ))/((u^2 +1)^2 ))du  =(1/(2x^3 ))∫_(−∞) ^(+∞)  ((sin(x^2 u^2 ))/((u^2  +1)^2 ))du  =(1/(2x^3 )) Im(∫_(−∞) ^(+∞)  (e^(ix^2 u^2 ) /((u^2  +1)^2 ))du)let  W(z)=(e^(ix^2 z^2 ) /((z^2  +1)^2 )) ⇒W(z) =(e^(ix^2 z^2 ) /((z−i)^2 (z+i)^2 ))  so the poles of W are i  and −i(doubles) residus theorem give  ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i) and  Res(W,i) =lim_(z→i)  (1/((2−1)!)){(z−i)^2 W(z)}^((1))   =lim_(z→i)    { (e^(ix^2 z^2 ) /((z+i)^2 ))}^((1))  =lim_(z→i)   ((2ix^2 z e^(ix^2 z^2 ) (z+i)^2 −2(z+i)e^(ix^2 z^2 ) )/((z+i)^4 ))  =lim_(z→i)   ((2ix^2 z e^(ix^2 z^2 ) (z+i)−2 e^(ix^2 z^2 ) )/((z+i)^3 ))  =lim_(z→i)  ((2ix^2 z(z+i)−2)/((z+i)^3 )) e^(ix^2 z^2 )  =((((2i)(−2x^2 )−2)e^(−ix^2 ) )/((2i)^3 ))  =(((−4ix^2 −2) e^(−ix^2 ) )/(−8i)) =(((2ix^2 −1)e^(−ix^2 ) )/(4i)) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ×(((2ix^2 −1)e^(−ix^2 ) )/(4i)) =(π/2)(2ix^2 −1)e^(−ix^2 )   =(π/2)(2ix^2 −1)(cos(x^2 )−isin(x^2 ))  =(π/2){2ix^2 cos(x^2 ) +2x^2 sin(x^2 )−cos(x^2 )+isin(x^2 )}  =(π/2){2x^2 sin(x^2 )−cos(x^2 ) +i(2x^2 cos(x^2 )+sin(x^2 )} ⇒  f(x)=((2x^2 cos(x^2 )+sin(x^2 ))/(2x^3 )) .

1)wehavef(x)=0sin(t2)(x2+t2)2dtcha7gementt=xugivef(x)=0sin(x2u2)x4(1+u2)2xdu=1x30sin(x2u2)(u2+1)2du=12x3+sin(x2u2)(u2+1)2du=12x3Im(+eix2u2(u2+1)2du)letW(z)=eix2z2(z2+1)2W(z)=eix2z2(zi)2(z+i)2sothepolesofWareiandi(doubles)residustheoremgive+W(z)dz=2iπRes(W,i)andRes(W,i)=limzi1(21)!{(zi)2W(z)}(1)=limzi{eix2z2(z+i)2}(1)=limzi2ix2zeix2z2(z+i)22(z+i)eix2z2(z+i)4=limzi2ix2zeix2z2(z+i)2eix2z2(z+i)3=limzi2ix2z(z+i)2(z+i)3eix2z2=((2i)(2x2)2)eix2(2i)3=(4ix22)eix28i=(2ix21)eix24i+W(z)dz=2iπ×(2ix21)eix24i=π2(2ix21)eix2=π2(2ix21)(cos(x2)isin(x2))=π2{2ix2cos(x2)+2x2sin(x2)cos(x2)+isin(x2)}=π2{2x2sin(x2)cos(x2)+i(2x2cos(x2)+sin(x2)}f(x)=2x2cos(x2)+sin(x2)2x3.

Commented by mathmax by abdo last updated on 31/Aug/19

sorry f(x) =(π/(4x^3 )){2x^2 cos(x^2 )+sin(x^2 )}

sorryf(x)=π4x3{2x2cos(x2)+sin(x2)}

Commented by mathmax by abdo last updated on 31/Aug/19

2) we have f^′ (x) =−∫_0 ^∞  ((−2(2x)(x^2 +t^2 ))/((x^2  +t^2 )^4 ))sin(t^2 )dt =4x∫_0 ^∞  ((sin(t^2 ))/((x^2  +t^2 )^3 ))  =4x g(x) ⇒g(x) =(1/(4x))f^′ (x)  we have   f(x)=(π/(4x^3 )){2x^2 cos(x^2 )+sin(x^2 )} ⇒  f^′ (x) =(π/4)(((−3x^2 )/x^6 )){2x^2 cos(x^2 )+sin(x^2 )}  +(π/(4x^3 )){ 4xcos(x^2 )−4x^3 sin(x^2 )+2xcos(x^2 )}=...

2)wehavef(x)=02(2x)(x2+t2)(x2+t2)4sin(t2)dt=4x0sin(t2)(x2+t2)3=4xg(x)g(x)=14xf(x)wehavef(x)=π4x3{2x2cos(x2)+sin(x2)}f(x)=π4(3x2x6){2x2cos(x2)+sin(x2)}+π4x3{4xcos(x2)4x3sin(x2)+2xcos(x2)}=...

Commented by mathmax by abdo last updated on 31/Aug/19

4) ∫_0 ^∞  ((sin(t^2 ))/((1+t^2 )^2 ))dt =f(1)=(π/4){2cos(1) +sin(1)}  =(π/2)cos(1)+(π/4)sin(1).  ∫_0 ^∞   ((sin(t^2 ))/((1+t^2 )^3 ))dt =g(1) rest to calculste g(1)...

4)0sin(t2)(1+t2)2dt=f(1)=π4{2cos(1)+sin(1)}=π2cos(1)+π4sin(1).0sin(t2)(1+t2)3dt=g(1)resttocalculsteg(1)...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com