Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62220 by maxmathsup by imad last updated on 17/Jun/19

let f(x) =∫_0 ^∞        (t^2 /(x^6   +t^6 )) dt      with x>0  1) calculate f(x)  2) calculate g(x) =∫_0 ^∞     (t^2 /((x^6  +t^6 )^2 ))dt  3) find values of integrals  ∫_0 ^∞      (t^2 /(t^6  +8))dt    and ∫_0 ^∞    (t^2 /((t^6 +8)^2 ))dt .

letf(x)=0t2x6+t6dtwithx>01)calculatef(x)2)calculateg(x)=0t2(x6+t6)2dt3)findvaluesofintegrals0t2t6+8dtand0t2(t6+8)2dt.

Commented by maxmathsup by imad last updated on 19/Jun/19

1) f(x)=∫_0 ^∞  (t^2 /(x^6  +t^6 ))dt  changement t =xu give    f(x) =∫_0 ^∞  ((x^2 u^2 )/(x^6  +x^6 u^6 )) xdu =(1/x^3 ) ∫_0 ^∞   (u^2 /(1+u^6 ))du   changement  u^6  =α give u=α^(1/6)   x^3 f(x) = ∫_0 ^∞    (((α^(1/6) )^2 )/(1+α)) (1/6) α^((1/6)−1)  du = ∫_0 ^∞    (α^((1/3)+(1/6)−1) /(1+α)) du =(1/6)∫_0 ^∞    (α^((1/2)−1) /(1+α)) dα  =(1/6) (π/(sin((π/2)))) =(π/6) ⇒f(x) =(π/(6x^3 ))     (x>0)  2) we have f^′ (x) = −∫_0 ^∞    ((6x^5 t^2 )/((x^6  +t^6 )^2 )) dt =−6x^5  ∫_0 ^∞    (t^2 /((x^6  +t^6 )^2 )) dt =−6x^5  g(x) ⇒  g(x) =−((f^′ (x))/(6x^5 ))         but f(x) =(π/6) x^(−3)  ⇒f^′ (x) =(π/6) (−3)x^(−4)   =−(π/(2x^4 )) ⇒  g(x) =−(1/(6x^5 ))(−(π/(2x^4 ))) =(π/(12x^9 ))  3)∫_0 ^∞   (t^2 /(t^6  +8)) dt = ∫_0 ^∞   (t^2 /(((√2))^6  +t^6 )) f((√2)) =(π/(6((√2))^3 )) =(π/(12(√2))) =((π(√2))/(24))  ∫_0 ^∞   (t^2 /((t^6  +8)^2 )) dt =g((√2)) = (π/(12((√2))^9 )) =(π/(12.(√2)(2^4 ))) =(π/(12×16×(√2))) =...

1)f(x)=0t2x6+t6dtchangementt=xugivef(x)=0x2u2x6+x6u6xdu=1x30u21+u6duchangementu6=αgiveu=α16x3f(x)=0(α16)21+α16α161du=0α13+1611+αdu=160α1211+αdα=16πsin(π2)=π6f(x)=π6x3(x>0)2)wehavef(x)=06x5t2(x6+t6)2dt=6x50t2(x6+t6)2dt=6x5g(x)g(x)=f(x)6x5butf(x)=π6x3f(x)=π6(3)x4=π2x4g(x)=16x5(π2x4)=π12x93)0t2t6+8dt=0t2(2)6+t6f(2)=π6(2)3=π122=π2240t2(t6+8)2dt=g(2)=π12(2)9=π12.2(24)=π12×16×2=...

Commented by maxmathsup by imad last updated on 19/Jun/19

i have used the result ∫_0 ^∞  (t^(a−1) /(1+t))dt =(π/(sin(πa))) if 0<a<1

ihaveusedtheresult0ta11+tdt=πsin(πa)if0<a<1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com