All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 63510 by turbo msup by abdo last updated on 05/Jul/19
letf(x)=∫0∞ta−1x+tdtwithx>0and0<a<11)calculatef(x)2)calculateg(x)=∫0∞ta−1(x+t)2dt3)findthevalueof∫0∞ta−1(1+t)2dt
Commented by mathmax by abdo last updated on 06/Jul/19
1)changementt=xugivef(x)=∫0∞(xu)a−1x+xuxdu=xa−1∫0∞ua−11+udu=xa−1πsin(πa)⇒f(x)=πxa−1sin(πa)2)wehavef′(x)=∫0∞∂∂x(ta−1x+t)dt=−∫0∞ta−1(x+t)2dt=−g(x)⇒g(x)=−f′(x)butf(x)=πsin(πa)e(a−1)ln(x)⇒f′(x)=π(a−1)xsin(πa)xa−1=π(a−1)xa−2sin(πa)⇒g(x)=π(1−a)sin(πa)xa−23)∫0∞ta−1(1+t)2dt=g(1)=π(1−a)sin(πa)(0<a<1).remarkwehaveforallintegrnf(n)(x)=∫0∞(−1)nn!ta−1(x+t)n+1dt⇒∫0∞ta−1(x+t)n+1dt=(−1)nn!f(n)(x)wehavef(x)=πsin(πa)e(a−1)ln(x)letfind(eλln(x))(n)(eλlnx)(1)=λxeλln(x)⇒(eλlnx)(2)=λ2x2eλln(x)⇒(eλln(x))(n)=λnxneλlnx⇒f(n)(x)=πsin(πa)(a−1)nxnxa−1=π(a−1)nsin(πa)xa−n−1⇒∫0∞ta−1(x+t)n+1dt=π(1−a)nn!sin(πa)xa−n−1specialcasex=1⇒∫0∞ta−1(1+t)n+1dt=π(1−a)nn!sin(πa).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com