Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63510 by turbo msup by abdo last updated on 05/Jul/19

let f(x)=∫_0 ^∞  (t^(a−1) /(x+t)) dt with x>0  and 0<a<1  1)calculate f(x)  2)calculate g(x)=∫_0 ^∞  (t^(a−1) /((x+t)^2 ))dt  3)find the value of∫_0 ^∞  (t^(a−1) /((1+t)^2 ))dt

letf(x)=0ta1x+tdtwithx>0and0<a<11)calculatef(x)2)calculateg(x)=0ta1(x+t)2dt3)findthevalueof0ta1(1+t)2dt

Commented by mathmax by abdo last updated on 06/Jul/19

1) changement t=xu give f(x)=∫_0 ^∞   (((xu)^(a−1) )/(x+xu)) xdu =x^(a−1)  ∫_0 ^∞  (u^(a−1) /(1+u))du  =x^(a−1)  (π/(sin(πa))) ⇒f(x)=((π x^(a−1) )/(sin(πa)))  2)we have f^′ (x) =∫_0 ^∞  (∂/∂x)((t^(a−1) /(x+t)))dt =−∫_0 ^∞    (t^(a−1) /((x+t)^2 )) dt =−g(x) ⇒  g(x)=−f^′ (x)   but  f(x) =(π/(sin(πa))) e^((a−1)ln(x))  ⇒  f^′ (x) =((π(a−1))/(xsin(πa))) x^(a−1)   =((π(a−1) x^(a−2) )/(sin(πa))) ⇒g(x)=((π(1−a))/(sin(πa))) x^(a−2)   3) ∫_0 ^∞   (t^(a−1) /((1+t)^2 )) dt =g(1) =((π(1−a))/(sin(πa)))              (0<a<1) .  remark   we have for all integr n  f^((n)) (x) =∫_0 ^∞    (((−1)^n n! t^(a−1) )/((x+t)^(n+1) )) dt ⇒ ∫_0 ^∞      (t^(a−1) /((x+t)^(n+1) ))dt =(((−1)^n )/(n!)) f^((n)) (x)   we have f(x) =(π/(sin(πa))) e^((a−1)ln(x))   let find  (e^(λln(x)) )^((n))   (e^(λlnx) )^((1))  = (λ/x) e^(λln(x))  ⇒(e^(λlnx) )^((2))  =(λ^2 /x^2 ) e^(λln(x))  ⇒(e^(λln(x)) )^((n))  =(λ^n /x^n ) e^(λlnx)  ⇒  f^((n)) (x) =(π/(sin(πa))) (((a−1)^n )/x^n ) x^(a−1)  =((π (a−1)^n )/(sin(πa))) x^(a−n−1)  ⇒  ∫_0 ^∞     (t^(a−1) /((x+t)^(n+1) ))dt =((π(1−a)^n )/(n! sin(πa))) x^(a−n−1)   special case  x=1 ⇒∫_0 ^∞      (t^(a−1) /((1+t)^(n+1) ))dt =((π(1−a)^n )/(n!sin(πa))) .

1)changementt=xugivef(x)=0(xu)a1x+xuxdu=xa10ua11+udu=xa1πsin(πa)f(x)=πxa1sin(πa)2)wehavef(x)=0x(ta1x+t)dt=0ta1(x+t)2dt=g(x)g(x)=f(x)butf(x)=πsin(πa)e(a1)ln(x)f(x)=π(a1)xsin(πa)xa1=π(a1)xa2sin(πa)g(x)=π(1a)sin(πa)xa23)0ta1(1+t)2dt=g(1)=π(1a)sin(πa)(0<a<1).remarkwehaveforallintegrnf(n)(x)=0(1)nn!ta1(x+t)n+1dt0ta1(x+t)n+1dt=(1)nn!f(n)(x)wehavef(x)=πsin(πa)e(a1)ln(x)letfind(eλln(x))(n)(eλlnx)(1)=λxeλln(x)(eλlnx)(2)=λ2x2eλln(x)(eλln(x))(n)=λnxneλlnxf(n)(x)=πsin(πa)(a1)nxnxa1=π(a1)nsin(πa)xan10ta1(x+t)n+1dt=π(1a)nn!sin(πa)xan1specialcasex=10ta1(1+t)n+1dt=π(1a)nn!sin(πa).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com