Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63664 by mathmax by abdo last updated on 07/Jul/19

let f(x)=∫_0 ^∞   (t^(a−1) /(x+t^n )) dt   with 0<a<1  and  x>0 and n≥2  1) determine a explicit form of f(x)  2) calculate g(x) =∫_0 ^∞   (t^(a−1) /((x+t^n )^2 )) dt  3) find f^((k)) (x) at form of integrals  4) calculate ∫_0 ^∞   (t^(a−1) /(9+t^2 )) dt    and   ∫_0 ^∞    (t^(a−1) /((9+t^2 )^2 ))  5) calculate  U_n =∫_0 ^∞    (t^((1/n)−1) /(2^n  +t^n )) dt  and study the convergence of Σ U_n

letf(x)=0ta1x+tndtwith0<a<1andx>0andn21)determineaexplicitformoff(x)2)calculateg(x)=0ta1(x+tn)2dt3)findf(k)(x)atformofintegrals4)calculate0ta19+t2dtand0ta1(9+t2)25)calculateUn=0t1n12n+tndtandstudytheconvergenceofΣUn

Commented by mathmax by abdo last updated on 09/Jul/19

1)we have f(x)=∫_0 ^∞  (t^(a−1) /(x +t^n ))dt  changement t =^n (√x)u give  f(x) =∫_0 ^∞    (((^n (√x)u)^(a−1) )/(x +xu^n ))^n (√x)du  =(x^(((a−1)/n)+(1/n)) /x) ∫_0 ^∞    (u^(a−1) /(1+u^n )) du =x^((a/n)−1)  ∫_0 ^∞   (u^(a−1) /(1+u^n ))  =_(u=α^(1/n) )     x^((a/n)−1)  ∫_0 ^∞    (α^((a−1)/n) /(1+α)) (1/n) α^((1/n)−1)  dα  = x^((a/n)−1)  ∫_0 ^∞      (α^(((a−1)/n)+(1/n)−1) /(1+α)) dα = x^((a/n)−1)   ∫_0 ^∞    (α^((a/n)−1) /(1+α)) dα ⇒  f(x)=x^((a/n)−1)   (π/(sin(((πa)/n))))

1)wehavef(x)=0ta1x+tndtchangementt=nxugivef(x)=0(nxu)a1x+xunnxdu=xa1n+1nx0ua11+undu=xan10ua11+un=u=α1nxan10αa1n1+α1nα1n1dα=xan10αa1n+1n11+αdα=xan10αan11+αdαf(x)=xan1πsin(πan)

Commented by mathmax by abdo last updated on 09/Jul/19

2) we have by derivation f^′ (x) =∫_0 ^∞ (∂/∂x)((t^(a−1) /(x+t^n )))dt  =−∫_0 ^∞    (t^(a−1) /((x+t^n )^2 ))dt =−g(x) ⇒g(x)=−f^′ (x)  f(x)=(π/(sin(((πa)/n)))) x^((a/n)−1)  ⇒f^′ (x) =((π((a/n)−1))/(sin(((πa)/n)))) x^((a/n)−2)  ⇒  g(x)=∫_0 ^∞   (t^(a−1) /((x+t^n )^2 ))dt =((π(1−(a/n)))/(sin(((πa)/n)))) x^((a/n)−2)

2)wehavebyderivationf(x)=0x(ta1x+tn)dt=0ta1(x+tn)2dt=g(x)g(x)=f(x)f(x)=πsin(πan)xan1f(x)=π(an1)sin(πan)xan2g(x)=0ta1(x+tn)2dt=π(1an)sin(πan)xan2

Commented by mathmax by abdo last updated on 09/Jul/19

3) we have f(x)=∫_0 ^∞  (t^(a−1) /(x +t^n )) dt ⇒f^((k)) (x) =∫_0 ^∞  (∂^k /∂x^k )((t^(a−1) /(x+t^n )))dt  =∫_0 ^∞   (((−1)^k k!)/((x+t^n )^(k+1) )) t^(a−1)  dt   ⇒f^((k)) (x) =(−1)^k k! ∫_0 ^∞    (t^(a−1) /((x+t^n )^(k+1) ))dt

3)wehavef(x)=0ta1x+tndtf(k)(x)=0kxk(ta1x+tn)dt=0(1)kk!(x+tn)k+1ta1dtf(k)(x)=(1)kk!0ta1(x+tn)k+1dt

Commented by mathmax by abdo last updated on 09/Jul/19

4) we have proved that ∫_0 ^∞  (t^(a−1) /(x+t^n )) dt  =(π/(sin(((πa)/n)))) x^((a/n)−1)  and  ∫_0 ^∞    (t^(a−1) /((x+t^n )^2 ))dt =((π(1−(a/n)))/(sin(((πa)/n)))) x^((a/n)−2)   x=9 and n=2 ⇒∫_0 ^∞   (t^(a−1) /(9+t^2 ))dt =(π/(sin(((πa)/2))))×9^((a/2)−1)   ∫_0 ^∞    (t^(a−1) /((9+t^2 )^2 ))dt =((π(1−(a/2)))/(sin(((πa)/2))))×9^((a/2)−2)

4)wehaveprovedthat0ta1x+tndt=πsin(πan)xan1and0ta1(x+tn)2dt=π(1an)sin(πan)xan2x=9andn=20ta19+t2dt=πsin(πa2)×9a210ta1(9+t2)2dt=π(1a2)sin(πa2)×9a22

Commented by mathmax by abdo last updated on 09/Jul/19

5) we have ∫_0 ^∞   (t^(a−1) /(x+t^n ))dt =(π/(sin(((πa)/n)))) x^((a/n)−1)   a=(1/n)  and x =2^n  ⇒∫_0 ^∞   (t^((1/n)−1) /(2^n  +t^n ))dt = (π/(sin((π/n^2 ))))(2^n )^((1/n^2 )−1)   =(π/(sin((π/n^2 ))))×2^((1/n)−n)  =(π/(2^(n−(1/n))    sin((π/n^2 )))) .

5)wehave0ta1x+tndt=πsin(πan)xan1a=1nandx=2n0t1n12n+tndt=πsin(πn2)(2n)1n21=πsin(πn2)×21nn=π2n1nsin(πn2).

Commented by mathmax by abdo last updated on 09/Jul/19

⇒ U_n =(π/(2^(n−(1/n))  sin((π/n^2 ))))

Un=π2n1nsin(πn2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com