Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40152 by maxmathsup by imad last updated on 16/Jul/18

let  f(x) =  ∫_(−1) ^x     (e^t /(√(1−e^t )))dt   with x<0  1) calculate f(x)  2) find  ∫_(−1) ^0   (e^t /(√(1−e^t )))dt

letf(x)=1xet1etdtwithx<01)calculatef(x)2)find10et1etdt

Commented by maxmathsup by imad last updated on 16/Jul/18

changement e^t   =u give  t=ln(u) ⇒  f(x)= ∫_e^(−1)  ^e^x       (u/(√(1−u))) (du/u) = ∫_e^(−1)  ^e^x      (du/(√(1−u))) =[−2(√(1−u))]_e^(−1)  ^e^x    f(x)=−2{(√(1−e^x  ))  −(√(1−e^(−1) ))}  2) ∫_(−1) ^0    (e^t /(√(1−e^t ))) dt =lim_(x→0)    f(x)= 2(√(1−e^(−1) ))

changementet=ugivet=ln(u)f(x)=e1exu1uduu=e1exdu1u=[21u]e1exf(x)=2{1ex1e1}2)10et1etdt=limx0f(x)=21e1

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jul/18

∫_(−1) ^x (e^t /(√(1−e^t )))dt  =−1∫_(−1) ^x ((d(1−e^t ))/(√(1−e^t )))  =−1×∣((√(1−e^t ))/(1/2))∣_(−1) ^x   =−2{(√(1−e^x  ))  −(√(1−e^(−1) ))  }  ∫_(−1) ^0 (e^t /((√(1−e^t )) ))dt  =−2{(√(1−e^0 ))  −(√(1−e_ ^(−1) }))  =2(√(1−e^(−1) )) }

1xet1etdt=11xd(1et)1et=1×1et121x=2{1ex1e1}10et1etdt=2{1e01e1}=21e1}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com