All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 40152 by maxmathsup by imad last updated on 16/Jul/18
letf(x)=∫−1xet1−etdtwithx<01)calculatef(x)2)find∫−10et1−etdt
Commented by maxmathsup by imad last updated on 16/Jul/18
changementet=ugivet=ln(u)⇒f(x)=∫e−1exu1−uduu=∫e−1exdu1−u=[−21−u]e−1exf(x)=−2{1−ex−1−e−1}2)∫−10et1−etdt=limx→0f(x)=21−e−1
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jul/18
∫−1xet1−etdt=−1∫−1xd(1−et)1−et=−1×∣1−et12∣−1x=−2{1−ex−1−e−1}∫−10et1−etdt=−2{1−e0−1−e−1}=21−e−1}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com