Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 39702 by math khazana by abdo last updated on 10/Jul/18

let f(x)=2(√(x−(√(x−3)) +2))  1) find D_f   2) calculate f^′ (x)  3) determine f^(−1) (x)  4) calculate (f^(−1) )^′ (x)  5) let u(x)=x^(2 )  +4  determine  v(x)=fou(x) and calculate  v^′ (x)   6)calculate  ∫_3 ^5  f(x)dx.

letf(x)=2xx3+21)findDf2)calculatef(x)3)determinef1(x)4)calculate(f1)(x)5)letu(x)=x2+4determinev(x)=fou(x)andcalculatev(x)6)calculate35f(x)dx.

Commented by math khazana by abdo last updated on 13/Jul/18

1) x ∈ D_f  ⇔ x≥3 and x+2−(√(x−3))≥0 ⇒  x≥3 and (x+2)^2 ≥x−3 ⇒ x^2  +4x +4−x +3≥0 ⇒  x^2  +3x +7≥0 thisinequality is true because  Δ= 9 −28<0  ⇒ D_f =[3,+∞[  2) we have f^2 (x) =4(x−(√(x−3)) +2) ⇒  2f^′ (x)f(x) =4(1 −(1/(2(√(x−3))))) =4((2(√(x−3))−1)/(2(√(x−3))))  =2((2(√(x−3)) −1)/(√(x−3))) ⇒f^′ (x)f(x)=((2(√(x−3))−1)/(√(x−3))) ⇒  f^′ (x) = ((2(√(x−3)) −1)/(2(√(x+2−(√(x−3)) )) (√(x−3)))) .

1)xDfx3andx+2x30x3and(x+2)2x3x2+4x+4x+30x2+3x+70thisinequalityistruebecauseΔ=928<0Df=[3,+[2)wehavef2(x)=4(xx3+2)2f(x)f(x)=4(112x3)=42x312x3=22x31x3f(x)f(x)=2x31x3f(x)=2x312x+2x3x3.

Commented by math khazana by abdo last updated on 13/Jul/18

3) f^(−1) (x)=y ⇔x=f(y) ⇒x=2(√(y+2−(√(y−3))))  ⇒x^2  =4(y+2 −(√(y−3))) ⇒  x^2  =4y +8 −4(√(y−3)) ⇒ 4(√(y−3))=4y+8−x^2  ⇒  16( y−3) = (4y+8 −x^2 )^2  ⇒  16y −48 =(4y+8)^2  −2x^2 (4y+8)+x^4   16y −48 =16y^2  +64y +64 −8yx^(2 ) −16x^2  +x^4  ⇒  x^4  −8(y+2)x^2  +16y^2  +64−16y+48=0 ⇒  x^4  −8(y+2)x^2   +16y^2  −16y  + 112 =0  Δ^′  = (−2(y+2))^2  −16y^(2 )  +16y −112  =4(y^2  +4y +4) −16 y^2  +16y −112  =−8y^2  +32y  +16 −112  ...be continued...

3)f1(x)=yx=f(y)x=2y+2y3x2=4(y+2y3)x2=4y+84y34y3=4y+8x216(y3)=(4y+8x2)216y48=(4y+8)22x2(4y+8)+x416y48=16y2+64y+648yx216x2+x4x48(y+2)x2+16y2+6416y+48=0x48(y+2)x2+16y216y+112=0Δ=(2(y+2))216y2+16y112=4(y2+4y+4)16y2+16y112=8y2+32y+16112...becontinued...

Commented by maxmathsup by imad last updated on 14/Jul/18

5) we have v(x)=f(u(x)) = 2(√(u(x)−(√(u(x)−3))+2))  = 2(√(x^2  +4−(√(x^2  +1))+2))  =2(√(x^2 −(√(x^2 +1))+6))  we have v^2 (x)=4{x^2  −(√(x^2  +1))+2} ⇒  2v(x)v^′ (x) =4{x^2  +2 −(√(x^2  +1))}^′ =4{ 2x−(x/(√(x^2  +1)))} ⇒  v(x)v^′ (x)=2{((2x(√(x^2  +1))−x)/(√(x^2  +1)))} ⇒v^′ (x)= (2/(v(x))) ((2x(√(x^2  +1))−x)/(√(x^2  +1)))  = ((2x(√(x^2  +1))−x)/(((√(x^2 +6−(√(x^2  +1)))((√(x^2  +1))))))).

5)wehavev(x)=f(u(x))=2u(x)u(x)3+2=2x2+4x2+1+2=2x2x2+1+6wehavev2(x)=4{x2x2+1+2}2v(x)v(x)=4{x2+2x2+1}=4{2xxx2+1}v(x)v(x)=2{2xx2+1xx2+1}v(x)=2v(x)2xx2+1xx2+1=2xx2+1x(x2+6x2+1)(x2+1).

Commented by maxmathsup by imad last updated on 14/Jul/18

6)  ∫_3 ^5   f(x)dx = 2 ∫_3 ^5  (√(x+2−(√(x−3)))) dx  changement (√(x−3))=t givex=3+t^2   ∫_3 ^5   f(x)dx = 2 ∫_0 ^(√2) (√(5+t^2 −t))2tdt=4 ∫_0 ^(√2) t(√(t^2  −t +5))dt  =4 ∫_0 ^(√2) t(√((t−(1/2))^2  +5−(1/4)))dt=4 ∫_0 ^(√2) t(√((t−(1/2))^2  +((19)/4)))dt  =_(t−(1/2)=((√(19))/2) sh(u))  4  ∫_(−arsh((1/(√(19))))) ^(argsh(((2(√2)−1)/(√(19)))))  ((1/2) +((√(19))/2)sh(u))ch(u)((√(19))/2) ch(u)du  = (√(19))∫_(−argsh((1/(√(19))))) ^(argsh(((2(√2)−1)/(√(19)))))  (1+(√(19))sh(u))ch(u)du  =(√(19)) ∫_(−argsh((1/(√(19))))) ^(argsh(((2(√2)−1)/(√(19)))))  ch(u)du  +(√(19))∫_(−argsh((1/(√(19))))) ^(argsh(((2(√2)−1)/(√(19)))))  sh(u)ch(u)du  =(√(19{)) ((2(√2)−1)/(√(19))) +(1/(√(19)))}  +((√(19))/2) { (((2(√2)−1)/(√(19))))^2 −((1/(19)))}.

6)35f(x)dx=235x+2x3dxchangementx3=tgivex=3+t235f(x)dx=2025+t2t2tdt=402tt2t+5dt=402t(t12)2+514dt=402t(t12)2+194dt=t12=192sh(u)4arsh(119)argsh(22119)(12+192sh(u))ch(u)192ch(u)du=19argsh(119)argsh(22119)(1+19sh(u))ch(u)du=19argsh(119)argsh(22119)ch(u)du+19argsh(119)argsh(22119)sh(u)ch(u)du=19{22119+119}+192{(22119)2(119)}.

Commented by ajfour last updated on 14/Jul/18

Great work sir!

Greatworksir!

Commented by math khazana by abdo last updated on 15/Jul/18

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com