All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 67187 by mathmax by abdo last updated on 23/Aug/19
letf(x)=arctan(x3)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie3)calculate∫01arctan(x3)dx
Commented by mathmax by abdo last updated on 28/Aug/19
1)f(x)=arctan(x3)⇒f′(x)=3x21+x6⇒f(n)(x)=(3x21+x6)(n−1)letdecomposeinsideC(x)F(x)=3x2x6+1z6+1=0⇒z6=−1=ei(2k+1)πsoifz=reiθwegetr=1and6θ=ei(2k+1)π⇒θ=ei(2k+1)π6sothepolesofFareZk=ei(2k+1)π6k∈[[0,5]]Z0=eiπ6,Z1=eiπ2=iZ2=ei5π6,Z3=ei7π6,Z4=ei9π6,Z5=ei11π6f(n)(x)=∑k=0n−1Cn−1k(3x2)(k)(1x6+1)(n−1−k)(leibniz)=3x2×{1x6+1}(n−1)+(n−1)(6x){1x6+1}(n−2)+6Cn−12{1x6+1}(n−3)letfind{1x6+1}(k)withkfromNwrhaveG(x)=1x6+1=∑i=05λix−ziλi=16zi5=−16zi⇒G(x)=−16∑i=05zix−zi⇒G(k)(x)=−16∑i=05zi×(−1)kk!(x−zi)k+1⇒G(n−1)(x)=−16∑i=05zi×(−1)n−1(n−1)!(x−zi)nG(n−2)(x)=−16∑i=05zi×(−1)n−2(n−2)!(x−zi)n−1G(n−3)(x)=−16∑i=05zi×(−1)n−3(n−3)!(x−zi)n−2sothevalueoff(n)(x)isdetermined.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com