Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67187 by mathmax by abdo last updated on 23/Aug/19

let f(x) =arctan(x^3 )  1)calculate f^((n)) (x)and f^((n)) (0)  2) developp f at integr serie  3) calculate ∫_0 ^1  arctan(x^3 )dx

letf(x)=arctan(x3)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie3)calculate01arctan(x3)dx

Commented by mathmax by abdo last updated on 28/Aug/19

1) f(x) =arctan(x^3 ) ⇒f^′ (x) =((3x^2 )/(1+x^6 )) ⇒f^((n)) (x)=(((3x^2 )/(1+x^6 )))^((n−1))   let decompose inside C(x) F(x) =((3x^2 )/(x^6  +1))  z^6  +1 =0 ⇒z^6 =−1 =e^(i(2k+1)π)    so if z=r e^(iθ)  we get r=1 and  6θ =e^(i(2k+1)π)  ⇒ θ =e^((i(2k+1)π)/6)   so the poles of F are  Z_k =e^((i(2k+1)π)/6)     k∈[[0,5]]    Z_0 =e^((iπ)/6)   , Z_1 =e^(i(π/2))  =i  Z_2 =e^((i5π)/6)   ,   Z_3 = e^((i7π)/6)  ,  Z_4 = e^((i9π)/6)    ,  Z_5 = e^((i11π)/6)   f^((n)) (x) =Σ_(k=0) ^(n−1)   C_(n−1) ^k (3x^2 )^((k)) ((1/(x^6 +1)))^((n−1−k))    (leibniz)  =3x^2 ×{(1/(x^6  +1))}^((n−1))  +(n−1)(6x){(1/(x^6  +1))}^((n−2))   +6 C_(n−1) ^2    {(1/(x^6  +1))}^((n−3))   let find {(1/(x^6  +1))}^((k))   with k from N  wr have G(x) =(1/(x^6  +1)) =Σ_(i=0) ^5  (λ_i /(x−z_i ))  λ_i =(1/(6z_i ^5 )) =−(1/6)z_i  ⇒G(x) =−(1/6)Σ_(i=0) ^5  (z_i /(x−z_i )) ⇒  G^((k)) (x) =−(1/6)Σ_(i=0) ^5 z_i ×(((−1)^k k!)/((x−z_i )^(k+1) )) ⇒  G^((n−1)) (x) =−(1/6)Σ_(i=0) ^5  z_i  ×(((−1)^(n−1) (n−1)!)/((x−z_i )^n ))  G^((n−2)) (x) =−(1/6)Σ_(i=0) ^5  z_i × (((−1)^(n−2) (n−2)!)/((x−z_i )^(n−1) ))  G^((n−3)) (x) =−(1/6)Σ_(i=0) ^5 z_i  ×(((−1)^(n−3) (n−3)!)/((x−z_i )^(n−2) ))  so the value of  f^((n)) (x) is determined.

1)f(x)=arctan(x3)f(x)=3x21+x6f(n)(x)=(3x21+x6)(n1)letdecomposeinsideC(x)F(x)=3x2x6+1z6+1=0z6=1=ei(2k+1)πsoifz=reiθwegetr=1and6θ=ei(2k+1)πθ=ei(2k+1)π6sothepolesofFareZk=ei(2k+1)π6k[[0,5]]Z0=eiπ6,Z1=eiπ2=iZ2=ei5π6,Z3=ei7π6,Z4=ei9π6,Z5=ei11π6f(n)(x)=k=0n1Cn1k(3x2)(k)(1x6+1)(n1k)(leibniz)=3x2×{1x6+1}(n1)+(n1)(6x){1x6+1}(n2)+6Cn12{1x6+1}(n3)letfind{1x6+1}(k)withkfromNwrhaveG(x)=1x6+1=i=05λixziλi=16zi5=16ziG(x)=16i=05zixziG(k)(x)=16i=05zi×(1)kk!(xzi)k+1G(n1)(x)=16i=05zi×(1)n1(n1)!(xzi)nG(n2)(x)=16i=05zi×(1)n2(n2)!(xzi)n1G(n3)(x)=16i=05zi×(1)n3(n3)!(xzi)n2sothevalueoff(n)(x)isdetermined.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com