All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 56310 by maxmathsup by imad last updated on 13/Mar/19
letf(x)=∫−∞+∞cos(t2+xt+3)dtwithx>01)findf(x)2)calculate∫14f(x)dxand∫1+∞f(x)dx
Commented by maxmathsup by imad last updated on 14/Mar/19
1)f(x)=Re(∫−∞+∞e−i(t2+xt+3)dt)but∫−∞+∞e−i(t2+xt+3)dt=e−3i∫−∞+∞e−i(t2+2x2t+x24−x24)dt=e−3i∫−∞+∞e−i(t+x2)2+ix24dt=ei(x24−3)∫−∞+∞e−{i(t+x2)}2dtchangementi(t+x2)=ugivef(x)=ei(x24−3)∫−∞+∞e−u2dui=πiei(x24−3)=πe−iπ4ei(x24−3)=πei(x24−3−π4)⇒f(x)=πcos(x24−3−π4).
errorfromline5wehave∫−∞+∞e−u2du=π⇒f(x)=Re(πiei(x24−3))⇒f(x)=πcos(x24−3−π4).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com