Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 146548 by mathmax by abdo last updated on 13/Jul/21

let f(x)=cos(αx) developp f at fourier serie  (α real)

letf(x)=cos(αx)developpfatfourierserie(αreal)

Answered by Olaf_Thorendsen last updated on 14/Jul/21

a_0  = (1/T)∫_(−(T/2)) ^(+(T/2)) f(x)dx  a_0  = (1/(2π))∫_(−π) ^(+π) cos(αx)dx  a_0  = (1/(2πα))[sin(αx)]_(−π) ^(+π)   a_0  = ((sin(πα))/(πα))  a_n  = (2/T)∫_(−(T/2)) ^(+(T/2)) f(x)cos(((2πnx)/T))dx  a_n  = (1/π)∫_(−π) ^(+π) cos(αx)cos(nx)dx  a_n  = (1/π)∫_(−π) ^(+π) (1/2)[cos((α−n)x)−cos((α+n)x)]dx  a_n  = (1/(2π))[((sin((α−n)x))/(α−n))−((sin((α+n)x))/(α+n))]_(−π) ^(+π)   a_n  = ((sin(π(α−n)))/(π(α−n)))−((sin(π(α+n)))/(π(α+n)))  b_n  = 0 (f is even)

a0=1TT2+T2f(x)dxa0=12ππ+πcos(αx)dxa0=12πα[sin(αx)]π+πa0=sin(πα)παan=2TT2+T2f(x)cos(2πnxT)dxan=1ππ+πcos(αx)cos(nx)dxan=1ππ+π12[cos((αn)x)cos((α+n)x)]dxan=12π[sin((αn)x)αnsin((α+n)x)α+n]π+πan=sin(π(αn))π(αn)sin(π(α+n))π(α+n)bn=0(fiseven)

Answered by mathmax by abdo last updated on 14/Jul/21

f(x)=(a_0 /2)+Σ_(n=1) ^∞  a_n cos(nx)  with a_n =(2/T)∫_(−(T/2)) ^(T/2)  f(x)cos(nx)dx  =(2/π)∫_0 ^π  cos(αx)cos(nx)dx =(1/π)∫_0 ^π (cos(n+α)x+cos(n−α)x)dx  ⇒a_n =[((sin(n+α)x)/(n+α)) +((sin(n−α)x)/(n−α))]_0 ^π   =((sin(nπ+απ))/(n+α)) +((sin(nπ−απ))/(n−α))  =(((−1)^n )/(n+α))sin(πα)−(((−1)^n )/(n−α))sin(πα) =(−1)^n sin(πα){(1/(n+α))−(1/(n−α))}  =−2α(−1)^n sin(απ)/n^2 −α^2  ⇒a_n =(1/π)(−2α(−1)^n sin(απ)/_(n^2 −α^2 )   =−((2α)/π)(−1)^n  sin(απ)/n^2 −α^2   a_o =(2/π)∫_0 ^π  cos(αx)dx =(2/(πα))sin(απ) ⇒  cos(αx)=((sin(πα))/(πα)) −((2α)/π)sin(πα)Σ_(n=1) ^∞  (((−1)^n )/(n^2 −α^2 ))cos(nx)   (α ∈R−Z)  let use this remark...x=π ⇒cos(απ)=((sin(απ))/(απ))−((2α)/π)sin(απ)Σ_(n=1) ^∞ (1/(n^2 −α^2 )) ⇒  cotan(απ) =(1/(απ))−((2α)/π)Σ_(n=1) ^∞  (1/(n^2 −α^2 ))  απ =t ⇒cotan(t)=(1/t)−(2/π).(t/π)Σ_(n=1) ^∞  (1/(n^2 −(t^2 /π^2 )))  ⇒cotant =(1/t)−Σ_(n=1) ^∞  ((2t)/(n^2 π^2 −t^2 )) ⇒  cotant =(1/t)+Σ_(n=1) ^∞  ((2t)/(t^2 −π^2 n^2 ))

f(x)=a02+n=1ancos(nx)withan=2TT2T2f(x)cos(nx)dx=2π0πcos(αx)cos(nx)dx=1π0π(cos(n+α)x+cos(nα)x)dxan=[sin(n+α)xn+α+sin(nα)xnα]0π=sin(nπ+απ)n+α+sin(nπαπ)nα=(1)nn+αsin(πα)(1)nnαsin(πα)=(1)nsin(πα){1n+α1nα}=2α(1)nsin(απ)/n2α2an=1π(2α(1)nsin(απ)/n2α2=2απ(1)nsin(απ)/n2α2ao=2π0πcos(αx)dx=2παsin(απ)cos(αx)=sin(πα)πα2απsin(πα)n=1(1)nn2α2cos(nx)(αRZ)letusethisremark...x=πcos(απ)=sin(απ)απ2απsin(απ)n=11n2α2cotan(απ)=1απ2απn=11n2α2απ=tcotan(t)=1t2π.tπn=11n2t2π2cotant=1tn=12tn2π2t2cotant=1t+n=12tt2π2n2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com