Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63508 by mathmax by abdo last updated on 05/Jul/19

let  f(x) =∫_(−∞) ^(+∞)     (dt/((t^2  +ixt −1)))  with ∣x∣>2   (i^2 =−1)  1) extract Re(f(x)) and Im(f(x))  2) calculate f(x)  3)  find olso g(x) =∫_(−∞) ^(+∞)   (t/((t^2  +ixt −1)^2 ))dt  4) find values of integrals  ∫_(−∞) ^(+∞)    (dt/((t^2 +3it −1)))  and ∫_(−∞) ^(+∞)    ((tdt)/((t^2  +3it −1)^2 ))  5) give f^((n)) (x) at form of integrals.

letf(x)=+dt(t2+ixt1)withx∣>2(i2=1)1)extractRe(f(x))andIm(f(x))2)calculatef(x)3)findolsog(x)=+t(t2+ixt1)2dt4)findvaluesofintegrals+dt(t2+3it1)and+tdt(t2+3it1)25)givef(n)(x)atformofintegrals.

Commented by mathmax by abdo last updated on 06/Jul/19

1) we have f(x) =∫_(−∞) ^(+∞)    (dt/(t^2 −1 +ixt)) =∫_(−∞) ^(+∞)   ((t^2 −1−ixt)/((t^2 −1)^2 +x^2 t^2 ))dt  =∫_(−∞) ^(+∞)    ((t^2 −1)/(t^4 −2t^2  +1 +x^2 t^2 )) dt −i ∫_(−∞) ^(+∞)  ((xt)/(t^4 −2t^2  +1 +x^2 t^2 )) dt  =∫_(−∞) ^(+∞)   ((t^2 −1)/(t^4 +(x^2 −2)t^2  +1)) −i×0    (the function t→(t/(t^4  +(x^2 −2)t^2  +1)) is odd)⇒  Re(f(x)) =∫_(−∞) ^(+∞)   ((t^2 −1)/(t^4  +(x^2 −2)t^2 +1))dt and Im(f(x))=0

1)wehavef(x)=+dtt21+ixt=+t21ixt(t21)2+x2t2dt=+t21t42t2+1+x2t2dti+xtt42t2+1+x2t2dt=+t21t4+(x22)t2+1i×0(thefunctionttt4+(x22)t2+1isodd)Re(f(x))=+t21t4+(x22)t2+1dtandIm(f(x))=0

Commented by mathmax by abdo last updated on 06/Jul/19

2) let w(z) =(1/(z^2  +ixz −1))  poles of w(z)?  Δ =(ix)^2 −4(−1) =−x^2  +4 =4−x^2 <0 ⇒Δ =(i(√(x^2 −4)))^2  ⇒  z_1 =((−ix+i(√(x^2 −4)))/2)  and z_2 =((−ix−i(√(x^2 −4)))/2) ⇒w(z)=(1/((z−z_1 )(z−z_2 )))  residus theorem give ∫_(−∞) ^(+∞)  w(z)dz =2iπRes(w,z_1 )  Res(w,z_1 ) =lim_(z→z_1  )   (z−z_1 )w(z) =(1/(z_1 −z_2 )) =(1/(i(√(x^2 −4)))) ⇒  ∫_(−∞) ^(+∞) w(z)dz =2iπ (1/(i(√(x^2 −4)))) =((2π)/(√(x^2 −4))) ⇒f(x)=((2π)/(√(x^2 −4)))

2)letw(z)=1z2+ixz1polesofw(z)?Δ=(ix)24(1)=x2+4=4x2<0Δ=(ix24)2z1=ix+ix242andz2=ixix242w(z)=1(zz1)(zz2)residustheoremgive+w(z)dz=2iπRes(w,z1)Res(w,z1)=limzz1(zz1)w(z)=1z1z2=1ix24+w(z)dz=2iπ1ix24=2πx24f(x)=2πx24

Commented by mathmax by abdo last updated on 06/Jul/19

3)by derivation we have f^′ (x) =−∫_(−∞) ^(+∞)   ((it)/((t^2 +ixt −1)^2 ))dt  =−i ∫_(−∞) ^(+∞)    ((tdt)/((t^2 +ixt −1)^2 )) =−ig(x) ⇒g(x)=i f^′ (x)  we have   f(x) =((2π)/(√(x^2 −4))) =2π(x^2 −4)^(−(1/2))  ⇒f^′ (x) =2π (−(1/2))(2x)(x^2 −4)^(−(3/2))   =((−2πx)/((x^2 −4)(√(x^2 −4)))) ⇒g(x) =((−2πix)/((x^2 −4)(√(x^2 −4)))) .

3)byderivationwehavef(x)=+it(t2+ixt1)2dt=i+tdt(t2+ixt1)2=ig(x)g(x)=if(x)wehavef(x)=2πx24=2π(x24)12f(x)=2π(12)(2x)(x24)32=2πx(x24)x24g(x)=2πix(x24)x24.

Commented by mathmax by abdo last updated on 06/Jul/19

4) we have proved that ∫_(−∞) ^(+∞)   (dt/(t^2 +ixt −1)) =((2π)/(√(x^2 −4)))    if   ∣x∣>2 ⇒  ∫_(−∞) ^(+∞)   (dt/(t^2 +3it−1)) = ((2π)/(√(3^2 −4))) =((2π)/(√5))   also we have  ∫_(−∞) ^(+∞)    (t/((t^2  +ixt −1)^2 ))dt =((−2πix)/((x^2 −4)(√(x^2 −4)))) ⇒  ∫_(−∞) ^(+∞)    ((tdt)/((t^2 +3it−1)^2 )) =((−6iπ)/(5(√5))) .

4)wehaveprovedthat+dtt2+ixt1=2πx24ifx∣>2+dtt2+3it1=2π324=2π5alsowehave+t(t2+ixt1)2dt=2πix(x24)x24+tdt(t2+3it1)2=6iπ55.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com