Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 58488 by Mr X pcx last updated on 23/Apr/19

let f(x) =∫   (dt/(x +cost +cos(2t)))  (x real)  1) find a explicit form of f(x)  2)determine also ∫  (dt/((x+cost +cos(2t))^2 ))  3) find ∫   (dt/(1+cos(t)+cos(2t))) and  ∫   (dt/((3 +cos(t)+cos(2t))^2 ))

letf(x)=dtx+cost+cos(2t)(xreal)1)findaexplicitformoff(x)2)determinealsodt(x+cost+cos(2t))23)finddt1+cos(t)+cos(2t)anddt(3+cos(t)+cos(2t))2

Commented by maxmathsup by imad last updated on 25/Apr/19

1) we have f(x) =∫  (dt/(x+cost +2cos^2 t−1)) let put cost =u and decompose  F(u) =(1/(2u^2  +u +x−1)) ⇒Δ =1−8(x−1) =9−8x   case 1  9−8x<0 ⇒no roots  and  (1/(2u^2  +u +x−1)) =(1/(2{u^2  +(u/2) +((x−1)/2)})) =(1/(2{ u^2  +2(1/4)u  +(1/(16)) +((x−1)/2)−(1/(16))}))  =(1/(2{ (u+(1/2))^2  +((8x−9)/(16))})) ⇒f(x) =∫    (dt/(2{(cost +(1/2))^2  +((8x−9)/(16))}))  changement  cost +(1/2) =((√(8x−9))/4)u give  4cost +2 =(√(8x−9))u ⇒  u =(1/(√(8x−9)))(4cost +2)  ⇒du =((−4 sint)/(√(8x−9)))dt =((−4(√(1−cos^2 t)))/(√(8x−9))) dt ⇒  (dt/du) =−((√(8x−9))/(4(√(1−(((√(8x−9))/4)u−(1/2))^2 )))) ⇒  f(x) = ∫    ((√(8x−9))/(8(√(1−(((√(8x−9))/4)u−(1/2))^2 ))(((8x−9)/(16)))(1+u^2 ))) du   ...be continued...  case 2   if 9−8x>0 ⇒F(u) have two poles  u_1 =((−1+(√(9−8x)))/4)  u_2 =((−1−(√(9−8x)))/4)  and F(u) =(1/(2(u−u_1 )(u−u_2 )))  =(1/(2(u_1 −u_2 ))){(1/(u−u_1 )) −(1/(u−u_2 ))} =  (1/(2(((√(9−8x))/2)))){ (1/(u−u_1 )) −(1/(u−u_2 ))} ⇒  f(x) =(1/(√(9−8x))){  ∫    (dt/(cost −u_1 )) −∫ (dt/(cost −u_2 ))}let find ∫   (dt/(cost −a))  ch. tan((t/2)) =u  give ∫   (dt/(cost −a)) =∫  (1/(((1−u^2 )/(1+u^2 )) −a)) ((2du)/(1+u^2 ))  = ∫    ((2du)/(1−u^2  −a(1+u^2 ))) =∫   ((2du)/(1−u^2 −a−au^2 )) =∫  ((2du)/(1−a−(1+a)u^2 ))  =∫  ((2du)/((1+a)u^2 +a−1))  ...

1)wehavef(x)=dtx+cost+2cos2t1letputcost=uanddecomposeF(u)=12u2+u+x1Δ=18(x1)=98xcase198x<0norootsand12u2+u+x1=12{u2+u2+x12}=12{u2+214u+116+x12116}=12{(u+12)2+8x916}f(x)=dt2{(cost+12)2+8x916}changementcost+12=8x94ugive4cost+2=8x9uu=18x9(4cost+2)du=4sint8x9dt=41cos2t8x9dtdtdu=8x941(8x94u12)2f(x)=8x981(8x94u12)2(8x916)(1+u2)du...becontinued...case2if98x>0F(u)havetwopolesu1=1+98x4u2=198x4andF(u)=12(uu1)(uu2)=12(u1u2){1uu11uu2}=12(98x2){1uu11uu2}f(x)=198x{dtcostu1dtcostu2}letfinddtcostach.tan(t2)=ugivedtcosta=11u21+u2a2du1+u2=2du1u2a(1+u2)=2du1u2aau2=2du1a(1+a)u2=2du(1+a)u2+a1...

Commented by maxmathsup by imad last updated on 26/Apr/19

   ⇒I=∫   ((2du)/((1+a)u^2  +a−1)) =(2/(1+a)) ∫  (du/(u^2  +((a−1)/(a+1))))  if ((a−1)/(a+1))>0  we do the changement  u =(√((a−1)/(a+1)))t ⇒  I = (2/(1+a)) ((a+1)/(a−1)) ∫   (1/(t^2  +1)) (√((a−1)/(a+1)))dt  =(2/(√(a^2 −1))) arctan((√((a+1)/(a−1)))u) +c_1 =(2/(√(a^2 −1))) arctan( (√((a+1)/(a−1)))tan((t/2)))+c_1 ....

I=2du(1+a)u2+a1=21+aduu2+a1a+1ifa1a+1>0wedothechangementu=a1a+1tI=21+aa+1a11t2+1a1a+1dt=2a21arctan(a+1a1u)+c1=2a21arctan(a+1a1tan(t2))+c1....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com