All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 58488 by Mr X pcx last updated on 23/Apr/19
letf(x)=∫dtx+cost+cos(2t)(xreal)1)findaexplicitformoff(x)2)determinealso∫dt(x+cost+cos(2t))23)find∫dt1+cos(t)+cos(2t)and∫dt(3+cos(t)+cos(2t))2
Commented by maxmathsup by imad last updated on 25/Apr/19
1)wehavef(x)=∫dtx+cost+2cos2t−1letputcost=uanddecomposeF(u)=12u2+u+x−1⇒Δ=1−8(x−1)=9−8xcase19−8x<0⇒norootsand12u2+u+x−1=12{u2+u2+x−12}=12{u2+214u+116+x−12−116}=12{(u+12)2+8x−916}⇒f(x)=∫dt2{(cost+12)2+8x−916}changementcost+12=8x−94ugive4cost+2=8x−9u⇒u=18x−9(4cost+2)⇒du=−4sint8x−9dt=−41−cos2t8x−9dt⇒dtdu=−8x−941−(8x−94u−12)2⇒f(x)=∫8x−981−(8x−94u−12)2(8x−916)(1+u2)du...becontinued...case2if9−8x>0⇒F(u)havetwopolesu1=−1+9−8x4u2=−1−9−8x4andF(u)=12(u−u1)(u−u2)=12(u1−u2){1u−u1−1u−u2}=12(9−8x2){1u−u1−1u−u2}⇒f(x)=19−8x{∫dtcost−u1−∫dtcost−u2}letfind∫dtcost−ach.tan(t2)=ugive∫dtcost−a=∫11−u21+u2−a2du1+u2=∫2du1−u2−a(1+u2)=∫2du1−u2−a−au2=∫2du1−a−(1+a)u2=∫2du(1+a)u2+a−1...
Commented by maxmathsup by imad last updated on 26/Apr/19
⇒I=∫2du(1+a)u2+a−1=21+a∫duu2+a−1a+1ifa−1a+1>0wedothechangementu=a−1a+1t⇒I=21+aa+1a−1∫1t2+1a−1a+1dt=2a2−1arctan(a+1a−1u)+c1=2a2−1arctan(a+1a−1tan(t2))+c1....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com