Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 37838 by math khazana by abdo last updated on 18/Jun/18

let f(x)= e^(−2x)  arctan(x^2 )  1)calculate f^((n)) (x)  2) find f^((n)) (0)  3) developp f at integr serie

letf(x)=e2xarctan(x2)1)calculatef(n)(x)2)findf(n)(0)3)developpfatintegrserie

Commented by math khazana by abdo last updated on 20/Jun/18

Leiniz formula give  f^((n)) (x)= Σ_(k=0) ^n  C_n ^k   (arctan(x^2 ))^((k))  (e^(−2x) )^((n−k))   we have (e^(−2x) )^((1)) =−2 e^(−2x)   (e^(−2x) )^((2)) =(−2)^2  e^(−2x)  ⇒ (e^(−2x) )^((p)) =(−2)^p  e^(−2x)   also we have   (arctan(x^2 ))^((1)) = ((2x)/(1+x^4 )) ⇒  (arctan(x^2 ))^((n)) =(((2x)/(1+x^4 )))^((n−1))   let w(x) = (x/(1+x^4 ))  w(x)= (x/((x^2  −i)(x^2 +i))) =(x/((x−(√i))(x+(√i))(x−(√(−i)))(x+(√(−i)))))  = (x/((x −e^((iπ)/4) )(x+ e^((iπ)/4) )( x−e^(−((iπ)/4)) )(x+e^(−((iπ)/4)) )))  =(a/(x−e^((iπ)/4) ))  +(b/(x +e^((iπ)/4) ))  +(c/(x−e^(−((iπ)/4)) )) +(d/(x + e^(−((iπ)/4)) ))  λ_i = (z_i /(4z_i ^3 )) = (1/(4z_i ^2 )) ⇒a= (1/(4(e^((iπ)/4) )^2 )) = (1/(4i)) =((−i)/4)  b =(1/(4i))=((−i)/4)   ,   c=−(1/(4i)) =(i/4)    ,   d=−(1/(4i)) =(i/4) ⇒  w^((n−1)) (x) =((−i)/4)  (((−1)^(n−1) (n−1)!)/((x−e^((iπ)/4) )^n ))  −(i/4) (((−1)^(n−1) (n−1)!)/((x +e^((iπ)/4) )^n ))  +(i/4) (((−1)^(n−1) (n−1)!)/((x−e^(−((iπ)/4)) )^n ))  +(i/4) (((−1)^(n−1) (n−1)!)/((x +e^(−((iπ)/4)) )^n )) ⇒  (arctan(x^2 ))^((n))   =(i/2)(−1)^(n−1) (n−1)!{  ((−1)/((x −e^((iπ)/4) )^n )) +((−1)/((x +e^((iπ)/4) )^n ))  + (1/((x −e^(−((iπ)/4)) )^n ))  + (1/((x +e^(−((iπ)/4)) )^n )) } ⇒  f^((n)) (x)  = (i/2)(−1)^(n−1) (n−1)!Σ_(k=0) ^n  (−2)^(n−k)  C_n ^k {((−1)/((x−e^((iπ)/4) )^k ))   +((−1)/((x +e^((iπ)/4) )^k ))  + (1/((x−e^(−((iπ)/4)) )^k )) +(1/((x +e^(−((iπ)/4)) )^k ))} e^(−2x)  .

Leinizformulagivef(n)(x)=k=0nCnk(arctan(x2))(k)(e2x)(nk)wehave(e2x)(1)=2e2x(e2x)(2)=(2)2e2x(e2x)(p)=(2)pe2xalsowehave(arctan(x2))(1)=2x1+x4(arctan(x2))(n)=(2x1+x4)(n1)letw(x)=x1+x4w(x)=x(x2i)(x2+i)=x(xi)(x+i)(xi)(x+i)=x(xeiπ4)(x+eiπ4)(xeiπ4)(x+eiπ4)=axeiπ4+bx+eiπ4+cxeiπ4+dx+eiπ4λi=zi4zi3=14zi2a=14(eiπ4)2=14i=i4b=14i=i4,c=14i=i4,d=14i=i4w(n1)(x)=i4(1)n1(n1)!(xeiπ4)ni4(1)n1(n1)!(x+eiπ4)n+i4(1)n1(n1)!(xeiπ4)n+i4(1)n1(n1)!(x+eiπ4)n(arctan(x2))(n)=i2(1)n1(n1)!{1(xeiπ4)n+1(x+eiπ4)n+1(xeiπ4)n+1(x+eiπ4)n}f(n)(x)=i2(1)n1(n1)!k=0n(2)nkCnk{1(xeiπ4)k+1(x+eiπ4)k+1(xeiπ4)k+1(x+eiπ4)k}e2x.

Commented by math khazana by abdo last updated on 20/Jun/18

error of calculus at the final line  f^((n)) (x) =(i/2) Σ_(k=0) ^n  (−2)^(n−k)   (−1)^(k−1) (k−1)! C_n ^k {  ((−1)/((x−e^((iπ)/4) )^k )) +((−1)/((x +e^((iπ)/4) )^k ))  + (1/((x−e^(−((iπ)/4)) )^k )) +(1/((x+e^(−((iπ)/4)) )^k ))}e^(−2x)

errorofcalculusatthefinallinef(n)(x)=i2k=0n(2)nk(1)k1(k1)!Cnk{1(xeiπ4)k+1(x+eiπ4)k+1(xeiπ4)k+1(x+eiπ4)k}e2x

Commented by math khazana by abdo last updated on 20/Jun/18

f^((n)) (0) =(i/2)Σ_(k=1) ^n (−2)^(n−k) (−1)^(k−1)  (k−1)!{  −(−e^((iπ)/4) )^(−k)  − ( e^((iπ)/4) )^(−k)   +(−e^(−((iπ)/4)) )^(−k)  +(e^(−((iπ)/4)) )^(−k) }  =(i/2)Σ_(k=1) ^n  (−2)^(n−k) (−1)^(k−1) (k−1)!{−(−1)^k  e^(−((ikπ)/4))   −e^(−((ikπ)/4))   +(−1)^k  e^((ikπ)/4)   + e^((ikπ)/4) }  =(i/2) Σ_(k=1) ^n (−2)^(n−k) (−1)^(k−1)) (k−1)!{((−1)^k +1)(e^((ikπ)/4) −e^(−((ikπ)/4)) )  =(i/2)Σ_(k=1) ^n (−1)^(k−1) (k−1)!(−2)^(n−k) {1+(−1)^k }2isin(((kπ)/4))  =Σ_(k=1) ^n (−1)^k (k−1)!(−2)^(n−k) (1+(−1)^k )sin(((kπ)/4))

f(n)(0)=i2k=1n(2)nk(1)k1(k1)!{(eiπ4)k(eiπ4)k+(eiπ4)k+(eiπ4)k}=i2k=1n(2)nk(1)k1(k1)!{(1)keikπ4eikπ4+(1)keikπ4+eikπ4}=i2k=1n(2)nk(1)k1)(k1)!{((1)k+1)(eikπ4eikπ4)=i2k=1n(1)k1(k1)!(2)nk{1+(1)k}2isin(kπ4)=k=1n(1)k(k1)!(2)nk(1+(1)k)sin(kπ4)

Commented by math khazana by abdo last updated on 20/Jun/18

3) f(x)=Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   = 2 Σ_(n=1) ^∞   (1/(n!)){Σ_(p=1) ^([(n/2)]) (2p−1)!(−2)^(n−2p) sin(((pπ)/2))}x^n

3)f(x)=n=0f(n)(0)n!xn=2n=11n!{p=1[n2](2p1)!(2)n2psin(pπ2)}xn

Commented by math khazana by abdo last updated on 20/Jun/18

f^((n)) (0) =Σ_(p=1) ^([(n/2)])  (2p−1)!(−2)^(n−2p)  sin(((pπ)/2)).

f(n)(0)=p=1[n2](2p1)!(2)n2psin(pπ2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com