Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 68035 by mathmax by abdo last updated on 03/Sep/19

let f(x) =e^(−iαx)     ,2π  periodic  .developp f at fourier serie.

letf(x)=eiαx,2πperiodic.developpfatfourierserie.

Commented by mathmax by abdo last updated on 08/Sep/19

f(x) =Σ_(n=−∞) ^(+∞)  a_n e^(inwx)    with w =((2π)/T) =1 ⇒  f(x)=Σ_(n=−∞) ^(+∞)  a_n e^(inx)      and a_n =(1/T)∫_(−(T/2)) ^(T/2)  f(x)e^(−inx) dx  =(1/(2π)) ∫_(−π) ^π  e^(−iαx)  e^(−inx) dx =(1/(2π)) ∫_(−π) ^π   e^(−i(α+n)x) dx ⇒  2π a_n =∫_(−π) ^π  e^(−i(α+n)x) dx =[(1/(−i(α+n)))e^(−i(α+n)x) ]_(−π) ^π   =((−1)/(i(α+n))){ e^(−i(α+n)π) −e^(−i(α+n)(−π)) }  =(i/(α+n)){  (−1)^n  e^(−iπα)   −(−1)^n  e^(iπα) }  =((−i(−1)^n )/(α+n)){ e^(iπα) −e^(−iπα) }  =((−i(−1)^n )/(n+α)) (2isin(πα))  =((2(−1)^n  sin(πα))/(n+α)) ⇒  e^(−iαx)  =Σ_(n=−∞) ^(+∞)   ((2(−1)^n sin(πα))/(n+α)) e^(inx)   =2sin(πα) Σ_(n=−∞) ^(+∞)   (((−1)^n )/(n+α)) e^(inx)   .

f(x)=n=+aneinwxwithw=2πT=1f(x)=n=+aneinxandan=1TT2T2f(x)einxdx=12πππeiαxeinxdx=12πππei(α+n)xdx2πan=ππei(α+n)xdx=[1i(α+n)ei(α+n)x]ππ=1i(α+n){ei(α+n)πei(α+n)(π)}=iα+n{(1)neiπα(1)neiπα}=i(1)nα+n{eiπαeiπα}=i(1)nn+α(2isin(πα))=2(1)nsin(πα)n+αeiαx=n=+2(1)nsin(πα)n+αeinx=2sin(πα)n=+(1)nn+αeinx.

Commented by mathmax by abdo last updated on 08/Sep/19

2π a_n =((2(−1)^n sin(πα))/(n+α)) ⇒ a_n =((sin(πα))/π) (((−1)^n )/(n+α)) ⇒  e^(−iαx)   =((sin(πα))/π)Σ_(n=−∞) ^(+∞)   (((−1)^n )/(n+α)) e^(inx)

2πan=2(1)nsin(πα)n+αan=sin(πα)π(1)nn+αeiαx=sin(πα)πn=+(1)nn+αeinx

Commented by mathmax by abdo last updated on 08/Sep/19

remark we have Σ_(n=−∞) ^(+∞)  (((−1)^n )/(n+α))e^(inx)   =Σ_(n=−∞) ^o  (((−1)^n )/(n+α))e^(inx)  +Σ_(n=1) ^∞  (((−1)^n )/(n+α)) e^(inx)   =(1/α) +Σ_(n=1) ^∞   (((−1)^n )/(α−n))e^(−inx)  +Σ_(n=1) ^∞  (((−1)^n )/(n+α)) e^(inx)   =(1/α) +Σ_(n=1) ^∞  (((−1)^n )/(α−n))(cos(nx)−isin(nx))+Σ_(n=1) ^∞  (((−1)^n )/(n+α))(cos(nx)+isin(nx))  =(1/α)+Σ_(n=1) ^∞  (−1)^n cos(nx){(1/(α−n))+(1/(α+n))}  +iΣ_(n=1) ^∞  (−1)^n sin(nx){(1/(α+n))−(1/(α−n))}  =(1/α) +Σ_(n=1) ^∞  (((−1)^n 2α)/(α^2 −n^2 )) cos(nx) −i Σ_(n=1) ^∞  (((−1)^n (2n))/(α^2 −n^2 ))  =cos(αx)−isin(αx) ⇒  cos(αx) =(1/α) +2α Σ_(n=1) ^∞   (((−1)^n  cos(nx))/(α^2 −n^2 ))  and  sin(αx) =2 Σ_(n=1) ^∞   ((n(−1)^n )/(α^2 −n^2 ))

remarkwehaven=+(1)nn+αeinx=n=o(1)nn+αeinx+n=1(1)nn+αeinx=1α+n=1(1)nαneinx+n=1(1)nn+αeinx=1α+n=1(1)nαn(cos(nx)isin(nx))+n=1(1)nn+α(cos(nx)+isin(nx))=1α+n=1(1)ncos(nx){1αn+1α+n}+in=1(1)nsin(nx){1α+n1αn}=1α+n=1(1)n2αα2n2cos(nx)in=1(1)n(2n)α2n2=cos(αx)isin(αx)cos(αx)=1α+2αn=1(1)ncos(nx)α2n2andsin(αx)=2n=1n(1)nα2n2

Commented by mathmax by abdo last updated on 08/Sep/19

error at final line   e^(−iαx)  =((sin(απ))/π){(1/α)+2α Σ_(n=1) ^∞  (((−1)^n  cos(nx))/(𝛂^2 −n^2 ))}  −i((sin(απ))/π) Σ_(n=1) ^∞  (((−1)^n (2n))/(α^2 −n^2 )) =cos(αx)−isin(αx) ⇒  cos(αx) =((sin(απ))/(απ)) +((2α)/π) sin(απ)Σ_(n=1) ^∞   (((−1)^n  cos(nx))/(α^2 −n^2 ))  sin(αx)=((2sin(απ))/π)Σ_(n=1) ^∞   (((−1)^n )/(α^2 −n^2 ))

erroratfinallineeiαx=sin(απ)π{1α+2αn=1(1)ncos(nx)α2n2}isin(απ)πn=1(1)n(2n)α2n2=cos(αx)isin(αx)cos(αx)=sin(απ)απ+2απsin(απ)n=1(1)ncos(nx)α2n2sin(αx)=2sin(απ)πn=1(1)nα2n2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com