Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38209 by prof Abdo imad last updated on 22/Jun/18

let f(x)=e^(−x) cosx  developp f at fourier serie  1) find the value of Σ_(n=−∞) ^(+∞)  (((−1)^n )/(1+n^2 ))  2) calculate Σ_(n=0) ^∞   (1/(n^2  +1)) .

letf(x)=excosxdeveloppfatfourierserie1)findthevalueofn=+(1)n1+n22)calculaten=01n2+1.

Commented by math khazana by abdo last updated on 25/Jun/18

f(x)=Σ_(n=−∞) ^(+∞)  c_n e^(inx)   with  c_n =(1/T)∫_([T]) f(x)e^(−inx) dx  = (1/(2π)) ∫_(−π) ^π   e^((−1−in)x) cosx dx  2π c_n = Re( ∫_(−π) ^π   e^((−1−in +i)x) dx) but   ∫_(−π) ^π    e^(−(1+(n−1)i)x) dx=[ (1/(−(1+(n−1)i)))e^(−(1+(n−1)i)x) ]_(−π) ^π   =((−1)/(1+(n−1)i)) { e^(−π) (−1)^(n−1)  −e^π  (−1)^(n−1) }  =(((−1)^(n−1) 2i sh(π)(1−(n−1)i))/(1+(n−1)^2 ))  =((2ish(π)(−1)^(n−1)  +2sh(π)(−1)^(n−1) )/((n−1)^2  +1)) ⇒  2πc_n = ((2sh(π)(−1)^(n−1) )/((n−1)^2  +1)) ⇒  c_n =  (((−1)^(n−1)  sh(π))/(π{ (n−1)^2  +1}))  ⇒  f(x)= Σ_(n=−∞) ^(+∞)   (((−1)^(n−1)  sh(π))/(π{ (n−1)^2  +1})) e^(inx)   =((sh(π))/π) Σ_(n=−∞) ^(+∞)   (((−1)^(n−1) )/((n−1)^2  +1)) e^(inx)  =e^(−x) cosx

f(x)=n=+cneinxwithcn=1T[T]f(x)einxdx=12πππe(1in)xcosxdx2πcn=Re(ππe(1in+i)xdx)butππe(1+(n1)i)xdx=[1(1+(n1)i)e(1+(n1)i)x]ππ=11+(n1)i{eπ(1)n1eπ(1)n1}=(1)n12ish(π)(1(n1)i)1+(n1)2=2ish(π)(1)n1+2sh(π)(1)n1(n1)2+12πcn=2sh(π)(1)n1(n1)2+1cn=(1)n1sh(π)π{(n1)2+1}f(x)=n=+(1)n1sh(π)π{(n1)2+1}einx=sh(π)πn=+(1)n1(n1)2+1einx=excosx

Commented by math khazana by abdo last updated on 25/Jun/18

2)f(0)=1 = ((sh(π))/π) Σ_(n=−∞) ^(+∞)  (((−1)^(n−1) )/((n−1)^2  +1))  =_(n−1=p)    ((sh(π))/π) Σ_(p=−∞) ^(+∞)   (((−1)^p )/(p^2  +1)) ⇒  Σ_(p=−∞) ^(+∞)    (((−1)^p )/(p^2  +1)) = (π/(sh(π))) .  3) f(π) = −e^(−π)  = −((sh(π))/π) Σ_(n=−∞) ^(+∞)  (1/((n−1)^2  +1))  ⇒Σ_(n=−∞) ^(+∞)    (1/(n^2  +1)) = ((π e^(−π) )/(sh(π))) .

2)f(0)=1=sh(π)πn=+(1)n1(n1)2+1=n1=psh(π)πp=+(1)pp2+1p=+(1)pp2+1=πsh(π).3)f(π)=eπ=sh(π)πn=+1(n1)2+1n=+1n2+1=πeπsh(π).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com