All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38209 by prof Abdo imad last updated on 22/Jun/18
letf(x)=e−xcosxdeveloppfatfourierserie1)findthevalueof∑n=−∞+∞(−1)n1+n22)calculate∑n=0∞1n2+1.
Commented by math khazana by abdo last updated on 25/Jun/18
f(x)=∑n=−∞+∞cneinxwithcn=1T∫[T]f(x)e−inxdx=12π∫−ππe(−1−in)xcosxdx2πcn=Re(∫−ππe(−1−in+i)xdx)but∫−ππe−(1+(n−1)i)xdx=[1−(1+(n−1)i)e−(1+(n−1)i)x]−ππ=−11+(n−1)i{e−π(−1)n−1−eπ(−1)n−1}=(−1)n−12ish(π)(1−(n−1)i)1+(n−1)2=2ish(π)(−1)n−1+2sh(π)(−1)n−1(n−1)2+1⇒2πcn=2sh(π)(−1)n−1(n−1)2+1⇒cn=(−1)n−1sh(π)π{(n−1)2+1}⇒f(x)=∑n=−∞+∞(−1)n−1sh(π)π{(n−1)2+1}einx=sh(π)π∑n=−∞+∞(−1)n−1(n−1)2+1einx=e−xcosx
2)f(0)=1=sh(π)π∑n=−∞+∞(−1)n−1(n−1)2+1=n−1=psh(π)π∑p=−∞+∞(−1)pp2+1⇒∑p=−∞+∞(−1)pp2+1=πsh(π).3)f(π)=−e−π=−sh(π)π∑n=−∞+∞1(n−1)2+1⇒∑n=−∞+∞1n2+1=πe−πsh(π).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com