Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 62882 by mathmax by abdo last updated on 26/Jun/19

let f(x)=ln∣((x−1)/(x+1))∣  1)determine D_f   2) calculatef^((n)) (x) and f^((n)) (0)  3) developp f at integr serie  4) calculate ∫_(−(1/2)) ^(1/2) f(x)dx .

letf(x)=lnx1x+11)determineDf2)calculatef(n)(x)andf(n)(0)3)developpfatintegrserie4)calculate1212f(x)dx.

Commented by mathmax by abdo last updated on 27/Jun/19

4) ∫_(−(1/2)) ^(1/2)  ln∣((x−1)/(x+1))∣dx =∫_(−(1/2)) ^(1/2) ln∣1−x∣ dx −∫_(−(1/2)) ^(1/2)  ln∣1+x∣ dx  =∫_(−(1/2)) ^(1/2) ln(1−x)dx −∫_(−(1/2)) ^(1/2)  ln(1+x)dx =H−K  H =_(1−x =t)      ∫_(3/2) ^(1/2) ln(t)(−dt) =∫_(1/2) ^(3/2) ln(t)dt =[tln(t)−t]_(1/2) ^(3/2)   =(3/2)ln((3/2))−(3/2) −(1/2)ln((1/2))+(1/2)  K =∫_(−(1/2)) ^(1/2) ln(1+x)dx =_(1+x =t)    ∫_(1/2) ^(3/2)  ln(t)dt =[tln(t)−t]_(1/2) ^(3/2)   =(3/2)ln((3/2))−(3/2) −(1/2)ln((1/2))+(1/2) ⇒  A =(3/2)ln((3/2))−(3/2) −(1/2)ln((1/2))+(1/2) −(3/2)ln((3/2))+(3/2) +(1/2)ln((1/2))−(1/2) ⇒  A =0     another[way  let prove that f is odd we have  f(−x) =ln∣((−x−1)/(−x+1))∣ =ln∣((x+1)/(x−1))∣ =−ln∣((x−1)/(x+1))∣=−f(x) ⇒ ∫_(−(1/2)) ^(1/2) f(x)dx =0.

4)1212lnx1x+1dx=1212ln1xdx1212ln1+xdx=1212ln(1x)dx1212ln(1+x)dx=HKH=1x=t3212ln(t)(dt)=1232ln(t)dt=[tln(t)t]1232=32ln(32)3212ln(12)+12K=1212ln(1+x)dx=1+x=t1232ln(t)dt=[tln(t)t]1232=32ln(32)3212ln(12)+12A=32ln(32)3212ln(12)+1232ln(32)+32+12ln(12)12A=0another[wayletprovethatfisoddwehavef(x)=lnx1x+1=lnx+1x1=lnx1x+1∣=f(x)1212f(x)dx=0.

Commented by mathmax by abdo last updated on 27/Jun/19

1) D_f =R−{−1,1}  2)we have f(x) =ln∣x−1∣−ln∣x+1∣ ⇒  f^′ (x) =(1/(x−1)) −(1/(x+1)) ⇒f^((n)) (x) =((1/(x−1)))^((n−1)) −((1/(x+1)))^((n−1))  ⇒  f^((n)) (x) =(((−1)^(n−1) (n−1)!)/((x−1)^n )) −(((−1)^(n−1) (n−1)!)/((x+1)^n )) =(−1)^(n−1) (n−1)!{(1/((x−1)^n ))−(1/((x+1)^n ))}  f^((n)) (x)=(−1)^(n−1) (n−1)!(((x+1)^n −(x−1)^n )/((x^2 −1)^n ))  with x≥1  f^((n)) (0) =(−1)^(n−1) (n−1)! ((1−(−1)^n )/((−1)^n )) =−(n−1)!(1−(−1)^n ) ={(−1)^n −1}(n−1)!  ⇒f^((2p)) (0) =0 and f^((2p+1)) (0) =−2(2p)!  3) f(x)  =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n  =Σ_(n=1) ^∞  ((f^((n)) (0))/(n!)) x^n  =Σ_(p=0) ^∞  ((−2 (2p)!)/((2p+1)!)) x^(2p+1)  ⇒   f(x)=−2Σ_(p=0) ^∞   (x^(2p+1) /(2p+1))

1)Df=R{1,1}2)wehavef(x)=lnx1lnx+1f(x)=1x11x+1f(n)(x)=(1x1)(n1)(1x+1)(n1)f(n)(x)=(1)n1(n1)!(x1)n(1)n1(n1)!(x+1)n=(1)n1(n1)!{1(x1)n1(x+1)n}f(n)(x)=(1)n1(n1)!(x+1)n(x1)n(x21)nwithx1f(n)(0)=(1)n1(n1)!1(1)n(1)n=(n1)!(1(1)n)={(1)n1}(n1)!f(2p)(0)=0andf(2p+1)(0)=2(2p)!3)f(x)=n=0f(n)(0)n!xn=n=1f(n)(0)n!xn=p=02(2p)!(2p+1)!x2p+1f(x)=2p=0x2p+12p+1

Commented by mathmax by abdo last updated on 27/Jun/19

sorry i have flaged the post by error...

sorryihaveflagedthepostbyerror...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com