Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 42999 by abdo.msup.com last updated on 06/Sep/18

let f(x)=(√x)+(1/(x−1))  1) calculate f^((n)) (2)  2) if f(x) =Σ_(n=0) ^∞  a_n (x−2)^n  find the  sequence a_n

letf(x)=x+1x11)calculatef(n)(2)2)iff(x)=n=0an(x2)nfindthesequencean

Commented by maxmathsup by imad last updated on 08/Sep/18

1) first let find f^((n)) (x)  we have f^((n)) (x)=((√x))^n  +((1/(x−1)))^n   but  {(1/(x−1))}^((n))  = (((−1)^n n!)/((x−1)^(n+1) )) let determine ((√x))^n  ={x^(1/2) }^((n)) let α fromQ  {x^α }^((1))  =α x^(α−1)  ⇒{x^α }^((2)) =α(α−1)x^(α−2)  ⇒{x^α }^((n))  =α(α−1)...(α−n+1)x^(α−n)   so { x^(1/2) }^((n)) =(1/2)((1/2)−1)((1/2)−2)....((1/2) −n+1)x^((1/2)−n)   =(1/2)(−(1/2))(−(3/2))....(((1−2n+2))/2))x^((1/2)−n)   =(1/2)(−(1/2))(−(3/2))....(−((2n−3)/2)) x^((1/2)−n)  ⇒  f^((n)) (x)=(1/2)(−(1/2))(−(3/2))=(−((2n−3)/2))x^((1/2)−n)  + (((−1)^n n!)/((x−1)^(n+1) )) .⇒  f^((n)) (2) =(1/2)(−(1/2))(−(3/2)).....(−((2n−3)/2))2^((1/2)−n)   +(−1)^n n!  = (1/(2^n (√2))) (−(1/2))(−(3/2))...(−((2n−3)/2)) +(−1)^n n! .  2) developpement of f(x) at integr serie seris at v(2) give  f(x) =Σ_(n=0) ^∞   ((f^((n)) (2))/(n!)) (x−2)^n  ⇒a_n =((f^((n)) (2))/(n!)) ⇒  a_n =  (1/((n!)2^n (√2)))(−(1/2))(−(3/2))...(−((2n−3)/2)) +(−1)^n  .    nt

1)firstletfindf(n)(x)wehavef(n)(x)=(x)n+(1x1)nbut{1x1}(n)=(1)nn!(x1)n+1letdetermine(x)n={x12}(n)letαfromQ{xα}(1)=αxα1{xα}(2)=α(α1)xα2{xα}(n)=α(α1)...(αn+1)xαnso{x12}(n)=12(121)(122)....(12n+1)x12n=12(12)(32)....(12n+2)2)x12n=12(12)(32)....(2n32)x12nf(n)(x)=12(12)(32)=(2n32)x12n+(1)nn!(x1)n+1.f(n)(2)=12(12)(32).....(2n32)212n+(1)nn!=12n2(12)(32)...(2n32)+(1)nn!.2)developpementoff(x)atintegrserieserisatv(2)givef(x)=n=0f(n)(2)n!(x2)nan=f(n)(2)n!an=1(n!)2n2(12)(32)...(2n32)+(1)n.nt

Terms of Service

Privacy Policy

Contact: info@tinkutara.com