All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 55270 by maxmathsup by imad last updated on 20/Feb/19
letf(x)=xnarctan(x2)withnintegrnatural1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.
Commented by maxmathsup by imad last updated on 02/Mar/19
1)leibnizformulagivef(n)(x)=∑k=0nCnk(xn)(k)(arctan(x2))(n−k)but(xn)(k)=n(n−1)...(n−k+1)xn−k=n!(n−k)!xn−kifk⩽n⇒f(n)(x)=∑k=0nn!k!(n−k)!n!(n−k)!xn−k{arctan(x2)})n−k)=∑k=0n(n!)2k!{(n−k)!}2{arctan(x2)}(n−k)letfind(arctan(x2))(m)wehave{arctan(x2)}(1)=2x1+x4=2x(x2−i)(x2+i)=2x(x−i)(x+i)(x−−i)(x+−i)=2x(x−eiπ4)(x+eiπ4)(x−e−iπ4)(x+e−iπ4)=F(x)=ax−eiπ4+bx+eiπ4+cx−e−iπ4+dx+e−iπ4a=2eiπ42eiπ4(2isin(π4))(2cos(π4))=14i12=12ib=−2eiπ4(−2eiπ4)(−2cos(π4))(−2isin(π4))=12ic=2e−iπ4(−2isin(π4))(2cos(π4))(2e−iπ4)=−12id=−2e−iπ4(−2cos(π4))(2isin(π4))(−2e−iπ4)=−12i⇒(arctan(x2))(1)=12i{1x−eiπ4+1x+eiπ4−1x−e−iπ4−1x+e−iπ4}⇒(arctan(x2))(m)=12i(−1)m−1(m−1)!{1(x−eiπ4)m+1(x+eiπ4)m−1(x−e−iπ4)m−1(x+e−iπ4)}⇒f(n)(x)=12i∑k=0n(n!)2k!{(n−k)!}2(−1)n−k−1(n−k−1)!{1(x−eiπ4)n−k+1(x+eiπ4)n−k−1(x−e−iπ4)n−k−1(x+e−iπ4)n−k}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com