Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 55270 by maxmathsup by imad last updated on 20/Feb/19

let f(x)=x^n arctan(x^2 )  with n integr natural  1) calculate f^((n)) (x) and f^((n)) (0)  2)developp f at integr serie .

letf(x)=xnarctan(x2)withnintegrnatural1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie.

Commented by maxmathsup by imad last updated on 02/Mar/19

1) leibniz formula give  f^((n)) (x)=Σ_(k=0) ^n  C_n ^k   (x^n )^((k))   (arctan(x^2 ))^((n−k))   but (x^n )^((k)) =n(n−1)...(n−k+1)x^(n−k)  =((n!)/((n−k)!)) x^(n−k)    if k≤n ⇒  f^((n)) (x) =Σ_(k=0) ^n  ((n!)/(k!(n−k)!)) ((n!)/((n−k)!)) x^(n−k)  {arctan(x^2 )}^()n−k))   =Σ_(k=0) ^n    (((n!)^2 )/(k!{(n−k)!}^2 )) { arctan(x^2 )}^((n−k))    let find (arctan(x^2 ))^((m))   we have  {arctan(x^2 )}^((1)) =((2x)/(1+x^4 )) =((2x)/((x^2 −i)(x^2  +i))) =((2x)/((x−(√i))(x+(√i))(x−(√(−i)))(x+(√(−i)))))  =((2x)/((x−e^((iπ)/4) )(x+e^((iπ)/4) )(x−e^(−((iπ)/4)) )(x+e^(−((iπ)/4)) ))) =F(x)=(a/(x−e^((iπ)/4) )) +(b/(x+e^((iπ)/4) )) +(c/(x−e^(−((iπ)/4)) )) +(d/(x+e^(−((iπ)/4)) ))  a =((2 e^((iπ)/4) )/(2e^((iπ)/4) (2i sin((π/4)))(2cos((π/4))))) = (1/(4i(1/2))) =(1/(2i))  b =((−2 e^((iπ)/4) )/((−2e^((iπ)/4) )(−2cos((π/4)))(−2i sin((π/4))))) =(1/(2i))  c =((2e^(−((iπ)/4)) )/((−2isin((π/4)))(2cos((π/4)))(2e^(−((iπ)/4)) ))) =−(1/(2i))  d =((−2e^(−((iπ)/4)) )/((−2cos((π/4)))(2i sin((π/4)))(−2e^(−((iπ)/4)) ))) =−(1/(2i)) ⇒  (arctan(x^2 ))^((1))  =(1/(2i)){(1/(x−e^((iπ)/4) )) +(1/(x+e^((iπ)/4) )) −(1/(x−e^(−((iπ)/4)) )) −(1/(x+e^(−((iπ)/4)) ))} ⇒  (arctan(x^2 ))^((m)) =(1/(2i))(−1)^(m−1) (m−1)!{ (1/((x−e^((iπ)/4) )^m )) +(1/((x+e^((iπ)/4) )^m )) −(1/((x−e^(−((iπ)/4)) )^m ))−(1/((x+e^(−((iπ)/4)) )))} ⇒  f^((n)) (x) =(1/(2i))Σ_(k=0) ^n   (((n!)^2 )/(k!{(n−k)!}^2 ))(−1)^(n−k−1) (n−k−1)!{(1/((x−e^((iπ)/4) )^(n−k) ))+(1/((x+e^((iπ)/4) )^(n−k) ))−(1/((x−e^(−((iπ)/4)) )^(n−k) )) −(1/((x+e^(−((iπ)/4)) )^(n−k) ))}

1)leibnizformulagivef(n)(x)=k=0nCnk(xn)(k)(arctan(x2))(nk)but(xn)(k)=n(n1)...(nk+1)xnk=n!(nk)!xnkifknf(n)(x)=k=0nn!k!(nk)!n!(nk)!xnk{arctan(x2)})nk)=k=0n(n!)2k!{(nk)!}2{arctan(x2)}(nk)letfind(arctan(x2))(m)wehave{arctan(x2)}(1)=2x1+x4=2x(x2i)(x2+i)=2x(xi)(x+i)(xi)(x+i)=2x(xeiπ4)(x+eiπ4)(xeiπ4)(x+eiπ4)=F(x)=axeiπ4+bx+eiπ4+cxeiπ4+dx+eiπ4a=2eiπ42eiπ4(2isin(π4))(2cos(π4))=14i12=12ib=2eiπ4(2eiπ4)(2cos(π4))(2isin(π4))=12ic=2eiπ4(2isin(π4))(2cos(π4))(2eiπ4)=12id=2eiπ4(2cos(π4))(2isin(π4))(2eiπ4)=12i(arctan(x2))(1)=12i{1xeiπ4+1x+eiπ41xeiπ41x+eiπ4}(arctan(x2))(m)=12i(1)m1(m1)!{1(xeiπ4)m+1(x+eiπ4)m1(xeiπ4)m1(x+eiπ4)}f(n)(x)=12ik=0n(n!)2k!{(nk)!}2(1)nk1(nk1)!{1(xeiπ4)nk+1(x+eiπ4)nk1(xeiπ4)nk1(x+eiπ4)nk}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com