Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 40105 by maxmathsup by imad last updated on 15/Jul/18

let  f(x) = x^n  e^(−2nx)     with n integr natural   calculate f^((n)) (0).

letf(x)=xne2nxwithnintegrnaturalcalculatef(n)(0).

Commented by maxmathsup by imad last updated on 17/Jul/18

leibniz formula give  f^((p)) (x)=Σ_(k=0) ^p   C_p ^k   (x^n )^((k))  (e^(−2nx) )^((p−k))   but   (x^n )^((k))  = n(n−1)....(n−k+1) x^(n−k)   if k≤n and (x^n )^((k)) =0 if k>n ⇒  (x^n )^((k))   =((n!)/((n−k)!)) x^(n−k)    also we have {e^(−2n) }^((p−k)) =(−2n)^(p−k)  e^(−2nx)  ⇒  f^((p)) (x)=Σ_(k=0) ^p   C_p ^k      ((n!)/((n−k)!)) x^(n−k)   (−2n)^(p−k)  e^(−2nx)    let suppose n≤p  f^((p)) (x)= Σ_(k=0) ^(n−1)   C_p ^k   ((n!)/((n−k)!)) x^(n−k) (−2n)^(p−k)  e^(−2nx )  + C_p ^n    ((n!)/(0!))(−2n)^(p−n)  e^(−2nx)   +Σ_(k=n+1) ^p  C_p ^k     ((n!)/((n−k)!)) x^(n−k) (−2n)^(p−k)  e^(−2nx)  ⇒  f^((p)) (0) = C_p ^n n! (−2n)^(p−n)  ⇒ f^((n)) (0) =n! C_n ^n   =n!

leibnizformulagivef(p)(x)=k=0pCpk(xn)(k)(e2nx)(pk)but(xn)(k)=n(n1)....(nk+1)xnkifknand(xn)(k)=0ifk>n(xn)(k)=n!(nk)!xnkalsowehave{e2n}(pk)=(2n)pke2nxf(p)(x)=k=0pCpkn!(nk)!xnk(2n)pke2nxletsupposenpf(p)(x)=k=0n1Cpkn!(nk)!xnk(2n)pke2nx+Cpnn!0!(2n)pne2nx+k=n+1pCpkn!(nk)!xnk(2n)pke2nxf(p)(0)=Cpnn!(2n)pnf(n)(0)=n!Cnn=n!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com