Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 37892 by abdo mathsup 649 cc last updated on 19/Jun/18

let   f(x)=(√(x+(√(x+1))))  1) find  D_f   2)  give the equation of assymtote at point  A(0,f(o))  3) if f(x)∼ a(x−1)  +b  (x→1) determine a andb  4) calculate f^′ (x)  5) find  f^(−1) (x)  and  (f^(−1) )^′ (x)

letf(x)=x+x+11)findDf2)givetheequationofassymtoteatpointA(0,f(o))3)iff(x)a(x1)+b(x1)determineaandb4)calculatef(x)5)findf1(x)and(f1)(x)

Commented by prof Abdo imad last updated on 21/Jun/18

4)we have f^2 (x)=x +(√(x+1)) ⇒  2f(x)f^′ (x)= 1 +(1/(2(√(x+1)))) ⇒  2(√(x+(√(x+1)))) f^′ (x)= 1+(1/(2(√(x+1)))) ⇒   f^′ (x)= (1/(2(√(x+(√(x+1)))))){ 1+(1/(2(√(x+1))))}  5) let f(x)=y  ⇔ x=f^(−1) (y) ⇒  (√(x+(√(x+1))))=y  ⇒ x+(√(x+1))=y^2  ⇒  (√(x+1))=y^2 −x ⇒x+1=(y^2 −x)^2 =x+1 ⇒  x^2  −2y^2 x +y^4  −x−1=0 ⇒x^2  −(2y^2 +1)x +y^4 −1=0  Δ=(2y^2  +1)^2  −4(y^4 −1)  =4y^4  +4y^2  +1−4y^4  +4=4y^2  +5 >0  x_1 =((2y^2  +1 +(√(4y^2  +5)))/2)  x_2 = ((2y^2  +1 −(√(4y^2  +5)))/2)  but we must have  x+1≥0  and y^2 −x ≥0 after verification  we find that x=((2y^2  +1−(√(4y^2  +5)))/2) ⇒  f^(−1) (x)=((2x^2  +1 −(√(4x^2  +5)))/2)  so  (f^(−1) )^′ (x)= 2x −(1/2) ((8x)/(2(√(4x^2  +5))))  =2x −((4x)/(√(4x^2  +5))) .

4)wehavef2(x)=x+x+12f(x)f(x)=1+12x+12x+x+1f(x)=1+12x+1f(x)=12x+x+1{1+12x+1}5)letf(x)=yx=f1(y)x+x+1=yx+x+1=y2x+1=y2xx+1=(y2x)2=x+1x22y2x+y4x1=0x2(2y2+1)x+y41=0Δ=(2y2+1)24(y41)=4y4+4y2+14y4+4=4y2+5>0x1=2y2+1+4y2+52x2=2y2+14y2+52butwemusthavex+10andy2x0afterverificationwefindthatx=2y2+14y2+52f1(x)=2x2+14x2+52so(f1)(x)=2x128x24x2+5=2x4x4x2+5.

Commented by math khazana by abdo last updated on 21/Jun/18

1) x ∈ D_f  ⇔ x+1≥0 and x+(√(x+1))≥0 ⇒  x ≥−1 and x +(√(x+1))≥0  so if x ≥0 we get  x+(√(x+1)) >0  if −1≤x≤0  (√(x+1))  +x =(√(x+1)) −(−x) and  ((√(x+1)))^2  −(−x)^2 =x+1 −x^2   =−x^2  +x +1 ⇒Δ=1−4(−1)=5  x_1 =((−1+(√5))/2) andx_2 = ((−1−(√5))/2)  (√(x+1)) +x = ((x+1 −x^2 )/((√(x+1))−x))   and (√(x+1)) −x>0 so  (√(1+x))+x ≥0 ⇔ x ∈[((−1−(√5))/2) , ((−1+(√5))/2)] but  [−1,0]⊂[((−1−(√5))/2),((−1+(√5))/2)] ⇒D_f =[−1,+∞[  2) y =f^′ (0)x +f(0)  but  f(x)=(√(x+(√(x+1)))) ⇒  f(0)=1 we have f^2 (x)=x +(√(x+1)) ⇒  2f(x)f^′ (x)=1+ (1/(2(√(x+1)))) ⇒2f(0)f^′ (0)= (3/2) ⇒  f^′ (0) =(3/4) so the equation of assymptote is  y= (3/4) x+1 .

1)xDfx+10andx+x+10x1andx+x+10soifx0wegetx+x+1>0if1x0x+1+x=x+1(x)and(x+1)2(x)2=x+1x2=x2+x+1Δ=14(1)=5x1=1+52andx2=152x+1+x=x+1x2x+1xandx+1x>0so1+x+x0x[152,1+52]but[1,0][152,1+52]Df=[1,+[2)y=f(0)x+f(0)butf(x)=x+x+1f(0)=1wehavef2(x)=x+x+12f(x)f(x)=1+12x+12f(0)f(0)=32f(0)=34sotheequationofassymptoteisy=34x+1.

Commented by math khazana by abdo last updated on 21/Jun/18

3) we have a=f^′ (1) and b=f(1)  b=(√(1+(√2)))  2f(1)f^′ (1)=1+ (1/(2(√2))) ⇒ f^′ (1)=(1/(2(√(1+(√2)))))(1+(1/(2(√2)))) =a

3)wehavea=f(1)andb=f(1)b=1+22f(1)f(1)=1+122f(1)=121+2(1+122)=a

Terms of Service

Privacy Policy

Contact: info@tinkutara.com