All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 65287 by mathmax by abdo last updated on 27/Jul/19
letf(x)=x∣x∣2πperiodicodddeveloppfatfourierseries
Commented by mathmax by abdo last updated on 28/Jul/19
f(x)=∑n=1∞ansin(nx)withan=2T∫[T]f(x)sin(nx)dx=22π∫−ππx∣x∣sin(nx)dx=2π∫0πx2sin(nx)dx⇒π2an=∫0πx2sin(nx)dxbypartsu=x2andv′=sin(nx)⇒π2an=[−x2ncos(nx)]0π−∫0π(2x)(−1n)cos(nx)dx=−π2n(−1)n+2n∫0πxcos(nx)dxagainbyparts∫0πxcos(nx)dx=[xnsin(nx)]0π−∫0π1nsin(nx)dx=−1n∫0πsin(nx)dx=1n2[cos(nx)]0π=1n2((−1)n−1)⇒π2an=−π2n(−1)n+2n3{(−1)n−1}an=2π{−π2n(−1)n+2n3{(−1)n−1)}=−2π(−1)nn+4πn3{(−1)n−1}⇒x∣x∣=∑n=1∞(−2π(−1)nn+4πn3{(−1)n−1})sin(nx)=−2π∑n=1∞(−1)nnsin(nx)+4π∑n=1∞(−1)n−1n3sin(nx)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com