Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65287 by mathmax by abdo last updated on 27/Jul/19

let f(x) =x∣x∣    2π periodic  odd  developp f at fourier series

letf(x)=xx2πperiodicodddeveloppfatfourierseries

Commented by mathmax by abdo last updated on 28/Jul/19

f(x) =Σ_(n=1) ^∞  a_n sin(nx) with a_n =(2/T) ∫_([T])   f(x)sin(nx)dx  =(2/(2π)) ∫_(−π) ^π  x∣x∣ sin(nx)dx =(2/π) ∫_0 ^π  x^2 sin(nx)dx   ⇒  (π/2)a_n =∫_0 ^π  x^2 sin(nx)dx  by parts u =x^2  and v^′  =sin(nx) ⇒  (π/2)a_n =[−(x^2 /n)cos(nx)]_0 ^π  −∫_0 ^π   (2x)(−(1/n))cos(nx)dx  =−(π^2 /n)(−1)^n   +(2/n) ∫_0 ^π   x cos(nx)dx again by parts  ∫_0 ^π  x cos(nx)dx =[(x/n)sin(nx)]_0 ^π  −∫_0 ^π  (1/n)sin(nx)dx  =−(1/n) ∫_0 ^π  sin(nx)dx =(1/n^2 )[cos(nx)]_0 ^π  =(1/n^2 )((−1)^n −1) ⇒  (π/2)a_n =−(π^2 /n)(−1)^n  +(2/n^3 ) {(−1)^n −1}  a_n =(2/π){−(π^2 /n)(−1)^n  +(2/n^3 ){ (−1)^n −1)}  =−2π (((−1)^n )/n) +(4/(πn^3 )){ (−1)^n −1} ⇒  x∣x∣ =Σ_(n=1) ^∞   (−2π (((−1)^n )/n) +(4/(πn^3 )){(−1)^n −1})sin(nx)  =−2π Σ_(n=1) ^∞   (((−1)^n )/n)sin(nx) +(4/π) Σ_(n=1) ^∞ (((−1)^n −1)/n^3 )sin(nx)

f(x)=n=1ansin(nx)withan=2T[T]f(x)sin(nx)dx=22πππxxsin(nx)dx=2π0πx2sin(nx)dxπ2an=0πx2sin(nx)dxbypartsu=x2andv=sin(nx)π2an=[x2ncos(nx)]0π0π(2x)(1n)cos(nx)dx=π2n(1)n+2n0πxcos(nx)dxagainbyparts0πxcos(nx)dx=[xnsin(nx)]0π0π1nsin(nx)dx=1n0πsin(nx)dx=1n2[cos(nx)]0π=1n2((1)n1)π2an=π2n(1)n+2n3{(1)n1}an=2π{π2n(1)n+2n3{(1)n1)}=2π(1)nn+4πn3{(1)n1}xx=n=1(2π(1)nn+4πn3{(1)n1})sin(nx)=2πn=1(1)nnsin(nx)+4πn=1(1)n1n3sin(nx)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com