Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33257 by prof Abdo imad last updated on 14/Apr/18

let g(x)= (1/(1+x^4 ))  1) find g^((n)) (x)  2) calculate g^((n)) (0)  3) if g(x)=Σ u_n  x^n    find the sequence u_n

letg(x)=11+x41)findg(n)(x)2)calculateg(n)(0)3)ifg(x)=Σunxnfindthesequenceun

Commented by prof Abdo imad last updated on 15/Apr/18

let decompose g(x) inside C(x)  g(x)= (1/((x^2 )^2 −i^2 )) = (1/((x^2 −i)(x^2 +i)))  = (1/((x−(√i))(x+(√i))(x −(√(−i)))(x+(√(−i)))))  = (1/((x −e^(i(π/4)) )(x +e^(i(π/4)) )(x  −e^(−i(π/4)) )( x +e^(−i(π/4)) )))  = (a/(x −e^(i(π/4)) ))  +(b/(x +e^(i(π/4)) )) + (c/(x −e^(−i(π/4)) )) + (d/(x + e^(−i(π/4)) ))  a = (1/(p^′ ( e^(i(π/4)) )))  with p(x)= 1+x^4  ⇒p^′ (x)=4x^3   if z_k  pole p^′ (z_k ) = 4z_k ^3   =((−4)/z_k ) ⇒a =−(e^(i(π/4)) /4)  p^′ (−e^(i(π/4)) ) =((−4)/(−e^(i(π/4)) )) = (4/e^(i(π/4)) ) ⇒ b = (1/4) e^(i(π/4))   p^′ ( e^(−i(π/4)) ) =((−4)/e^(−i(π/4)) ) ⇒ c =−(1/4) e^(−i(π/4))   p^′  ( −e^(−i(π/4)) )  =  ((−4)/(−e^(−i(π/4)) ))  ⇒ d= (1/4) e^(−i(π/4))   g(x) =−(e^(i(π/4)) /(4(x −e^(i(π/4)) )))  +(e^(i(π/4)) /(4( x +e^(i(π/4)) ))) −(e^(−i(π/4)) /(4(x −_ e^(−i(π/4)) )))  + (e^(−i(π/4)) /(4(  x +e^(−i(π/4)) ))) ⇒  g^((n)) (x) = (e^(i(π/4)) /4) (   (((−1)^n n!)/((x +e^(i(π/(4{))) )^(n+1) )) −(((−1)^n n!)/((x −e^(i(π/4)) )^(n+1) )))  + (e^(−i(π/4)) /4) (   (((−1)^n n!)/((x + e^(−i(π/4)) )^(n+1) )) − (((−1)^n n!)/((x −e^(−i(π/4)) )^(n+1) )))  g^((n)) (0) =(((−1)^n n! e^(i(π/4)) )/4)(  e^(−i(((n+1)π)/4))  −(−1)^(n+1)  e^(−i(((n+1)π)/4)) )  + (((−1)^n n! e^(−i(π/4)) )/4)(  e^(i(((n+1)π)/4))  −(−1)^(n+1)  e^(i(((n+1)π)/4)) )...  be continued...

letdecomposeg(x)insideC(x)g(x)=1(x2)2i2=1(x2i)(x2+i)=1(xi)(x+i)(xi)(x+i)=1(xeiπ4)(x+eiπ4)(xeiπ4)(x+eiπ4)=axeiπ4+bx+eiπ4+cxeiπ4+dx+eiπ4a=1p(eiπ4)withp(x)=1+x4p(x)=4x3ifzkpolep(zk)=4zk3=4zka=eiπ44p(eiπ4)=4eiπ4=4eiπ4b=14eiπ4p(eiπ4)=4eiπ4c=14eiπ4p(eiπ4)=4eiπ4d=14eiπ4g(x)=eiπ44(xeiπ4)+eiπ44(x+eiπ4)eiπ44(xeiπ4)+eiπ44(x+eiπ4)g(n)(x)=eiπ44((1)nn!(x+eiπ4{)n+1(1)nn!(xeiπ4)n+1)+eiπ44((1)nn!(x+eiπ4)n+1(1)nn!(xeiπ4)n+1)g(n)(0)=(1)nn!eiπ44(ei(n+1)π4(1)n+1ei(n+1)π4)+(1)nn!eiπ44(ei(n+1)π4(1)n+1ei(n+1)π4)...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com