Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 28071 by abdo imad last updated on 20/Jan/18

let give  A_p = ∫_0 ^π  t^p  cos(nx)  with nand p from N  1) find a relation between  A_p  and A_(p−2)   2) find arelation between  A_(2p)   and A_(2p−2)   3) find a relation?betweer A_(2p+1)  and  A_(2p−1)   3) cslculat  A_(0 ) , A_1 , A_2  , A_2 .

letgiveAp=0πtpcos(nx)withnandpfromN1)findarelationbetweenApandAp22)findarelationbetweenA2pandA2p23)findarelation?betweerA2p+1andA2p13)cslculatA0,A1,A2,A2.

Commented by abdo imad last updated on 26/Jan/18

let integrate by parts  1)A_p = [(1/n)t^p sin(nt)]_0 ^π  − ∫_0 ^π  (p/n)t^(p−1) sin(nt)dx  =−(p/n) ∫_0 ^π  t^(p−1)  sin(nt)dt  =−(p/n)( [((−1)/n) t^(p−1) cos(nt)]_0 ^π   −∫_0 ^π −((p−1)/n) t^(p−2)  cos(nt)dt )  =−(p/n)( ((−π^(p−1) (−1)^n )/n) +((p−1)/n) ∫_0 ^π  t^(p−2)  cos(nt)dt)  =(p/n^2 ) π^(p−1) (−1)^n   −((p(p−1))/n^2 ) A_(p−2)   so  A_p =  (1/n^2 )(  p π^(p−1) (−1)^n   −p(p−1) A_(p−2))   )  2) A_(2p)  = (1/n^2 )(2p π^(2p−1) (−1)^n  −(2p)(2p−1) A_(2p−2)  )  3) A_(2p+1 ) ^(               ) = (1/n^(2 ) )((2p+1)π^(2p) (−1)^n  −2p(2p+1) A_(2p−1) )  4) A_0   = ∫_0 ^π cos(nx)dx=[(1/n) sin(nx)]_0 ^π =0  A_1 = ∫_0 ^π t cos(nt)t = [ (t/n) sin(nt)]_0 ^π  − ∫_0 ^π  (1/n)sin(nt)dt  = −(1/n) ∫_0 ^π sin(nt)dt= (1/n^2 )[ cos(nt)]_0 ^π =(1/n^2 )( (−1)^n −1)  A_(2 ) =(1/n^2 )( 2π(−1)^n   −2A_0 ) =((2π)/n^2 )(−1)^n ....be contunued...

letintegratebyparts1)Ap=[1ntpsin(nt)]0π0πpntp1sin(nt)dx=pn0πtp1sin(nt)dt=pn([1ntp1cos(nt)]0π0πp1ntp2cos(nt)dt)=pn(πp1(1)nn+p1n0πtp2cos(nt)dt)=pn2πp1(1)np(p1)n2Ap2soAp=1n2(pπp1(1)np(p1)Ap2))2)A2p=1n2(2pπ2p1(1)n(2p)(2p1)A2p2)3)A2p+1=1n2((2p+1)π2p(1)n2p(2p+1)A2p1)4)A0=0πcos(nx)dx=[1nsin(nx)]0π=0A1=0πtcos(nt)t=[tnsin(nt)]0π0π1nsin(nt)dt=1n0πsin(nt)dt=1n2[cos(nt)]0π=1n2((1)n1)A2=1n2(2π(1)n2A0)=2πn2(1)n....becontunued...

Commented by abdo imad last updated on 26/Jan/18

A_3 = (1/n^2 )( 3 π^2 (−1)^n  −6 A_1 )  = (1/n^2 )( 3 π^2 (−1)^n  −(6/n^2 )( (−1)^n −1))  =((3 π^2 )/n^2 )(−1)^n   −(6/n^4 )( (−1)^n −1).

A3=1n2(3π2(1)n6A1)=1n2(3π2(1)n6n2((1)n1))=3π2n2(1)n6n4((1)n1).

Commented by abdo imad last updated on 26/Jan/18

A_p = ∫_0 ^π  t^p cos(nt)dt.

Ap=0πtpcos(nt)dt.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com