All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 28071 by abdo imad last updated on 20/Jan/18
letgiveAp=∫0πtpcos(nx)withnandpfromN1)findarelationbetweenApandAp−22)findarelationbetweenA2pandA2p−23)findarelation?betweerA2p+1andA2p−13)cslculatA0,A1,A2,A2.
Commented by abdo imad last updated on 26/Jan/18
letintegratebyparts1)Ap=[1ntpsin(nt)]0π−∫0πpntp−1sin(nt)dx=−pn∫0πtp−1sin(nt)dt=−pn([−1ntp−1cos(nt)]0π−∫0π−p−1ntp−2cos(nt)dt)=−pn(−πp−1(−1)nn+p−1n∫0πtp−2cos(nt)dt)=pn2πp−1(−1)n−p(p−1)n2Ap−2soAp=1n2(pπp−1(−1)n−p(p−1)Ap−2))2)A2p=1n2(2pπ2p−1(−1)n−(2p)(2p−1)A2p−2)3)A2p+1=1n2((2p+1)π2p(−1)n−2p(2p+1)A2p−1)4)A0=∫0πcos(nx)dx=[1nsin(nx)]0π=0A1=∫0πtcos(nt)t=[tnsin(nt)]0π−∫0π1nsin(nt)dt=−1n∫0πsin(nt)dt=1n2[cos(nt)]0π=1n2((−1)n−1)A2=1n2(2π(−1)n−2A0)=2πn2(−1)n....becontunued...
A3=1n2(3π2(−1)n−6A1)=1n2(3π2(−1)n−6n2((−1)n−1))=3π2n2(−1)n−6n4((−1)n−1).
Ap=∫0πtpcos(nt)dt.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com