All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33352 by caravan msup abdo. last updated on 15/Apr/18
letgiveS(x)=∑n⩾0(−1)nx+n,x>01)studythecontnuity,derivsbility,limitsat0+and+∞2)wegive∫0∞e−t2dt=π2.provethat∀x>0S(x)=1π∫0∞e−txt(1+e−t)dt.
Commented by math khazana by abdo last updated on 20/Apr/18
1)letputfn(x)=(−1)nx+nthesequence(fn)arecontinuendtheserieΣfn(x)isconvergent(ifwetakeφ(t)=1x+t.φisdecreszingsoΣfnisalternating)itssumS(x)iscontinueforx>0alsothe(fn)arederivablesandfn′(x)=(−1)n−12(x+n)x+n∑fn′(x)isconvergentasaalternatingseriesoSisderivableandS′(x)=∑n=0∞(−1)n+12(x+n)x+n.2)wehave∫0∞e−txt(1+e−t)dt=∫0∞e−txt(∑n=0∞(−1)ne−nt)dt=∑n=0∞(−1)n∫0∞e−(n+x)ttdt(ch.t=u)=∑n=0∞(−1)n∫0∞e−(n+x)u2u2udu=2∑n=0∞(−1)n∫0∞e−(n+x)u2du=n+xu=t2∑n=0∞(−1)n∫0∞e−t2dtn+x=2.π2∑n=0∞(−1)nn+x=πS(x)⇒S(x)=1π∫0∞e−txt(1+e−t)dt.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com