All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 33847 by prof Abdo imad last updated on 26/Apr/18
letgiveasequenceofrealnumbetspositif(ai)1⩽i⩽n1)provethat(∑i=1nai)2⩽n∑i=1nai22)letputHn=∑k=1n1kandwn=Hn2nprovethatthesequencewnisconvergent.
Commented by prof Abdo imad last updated on 27/Apr/18
forallsequencesofrealsnumberspositifs(ai)1⩽i⩽nand(bi)1⩽i⩽nwehave∑i=1naibi⩽(∑i=1nai2)12(∑i=1nbi2)12(holderinequality)lettakebi=1∀i∈[[1,n]]⇒∑i=1nai⩽n(∑i=1nai2)12⇒(∑i=1nai)2⩽n(∑i=1nai2)2)lettakeai=1i∀i∈[1,n]⇒(∑i=1n1i)2⩽n∑i=1n1i2⇒Hn2⩽n∑i=1n1i2⇒Hn2n⩽∑i=1n1i2⇒wn⩽∑i=1n1i2Riemanserieconvergentso(wn)isconvergent.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com