Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 32341 by abdo imad last updated on 23/Mar/18

let give λ from R and λ^2 ≠1 and  I_n (λ) = ∫_0 ^π    ((cos(nt))/(1−2λcost +λ^2 ))dt  .calculate I_n (λ).

letgiveλfromRandλ21andIn(λ)=0πcos(nt)12λcost+λ2dt.calculateIn(λ).

Commented by abdo imad last updated on 01/Apr/18

ch.t=2x give  I_n (λ) =2 ∫_0 ^(2π)   ((cos(2nx))/(1−2λcos(2x) +λ^2 ))dx after  we use the ch. e^(ix) =z  I_n (λ) =2 ∫_(∣z∣=1)      (((z^(2n)  +z^(−2n) )/2)/(1−2λ ((z^2  +z^(−2) )/2))) (dz/(iz))  = 2 ∫_(∣z∣=1)    ((z^(2n)  +z^(−2n) )/(iz( 2 −2λ(z^2  +z^(−2) ))))dz  = ∫_(∣z∣=1)         ((z^(2n)  +z^(−2n) )/(iz( 1−λz^2  −λ z^(−2) ))) = ∫_(∣z∣=1)  ((−i(z^(2n)  +z^(−2n) ))/(z( 1−λz^2  −(λ/z^2 ))))dz  = ∫_(∣z∣=1)      ((−i z(z^(2n)  +z^(−2n) ))/(z^2  −λz^4  −λ)) dz  = ∫_(∣z∣ =1)    ((i( z^(2n+1)  +z^(−2n+1) ))/(λz^4  −z^2  +λ))dz  let put  ϕ(z) = ((i(z^(2n+1)  +z^(−2n+1) ))/(λ z^4  −z^2  +λ))  .poles of ϕ?  λ z^4  −z^2  +λ =0 ⇒Δ = 1−4λ^2   if Δ≥0 the roots are reals  z_1 ^2  = ((1 +(√(1−4λ^2 )))/2) and z_2 ^2  = ((1−(√(1−4λ^2 )))/2) ⇒  z_1 =ξ (√((1+(√(1−4λ^2 )))/2))   and  z_2  = ξ(√((1−(√(1−4λ^2 )))/2))  with ξ^2  =1  and we get ∫_R ϕ(z)dx=2iπΣ_i  Res(ϕ,x_i )  if Δ<0   Δ =(i(√(4λ^2 −1)) )^2  ⇒   z_1 ^2    = ((1+i(√(4λ^2  −1)))/2) ⇒ z_1  =ξ(√((1+i(√(4λ^2 −1)))/2))  z_2 ^2   = ((1 −i(√(4λ^2 −1)))/2) ⇒ z_2 =ξ(√( ((1−i(√(4λ^2 −1)))/2)))  and we choose the roots wich verify ∣z_i ∣≤1 ....be continued

ch.t=2xgiveIn(λ)=202πcos(2nx)12λcos(2x)+λ2dxafterweusethech.eix=zIn(λ)=2z∣=1z2n+z2n212λz2+z22dziz=2z∣=1z2n+z2niz(22λ(z2+z2))dz=z∣=1z2n+z2niz(1λz2λz2)=z∣=1i(z2n+z2n)z(1λz2λz2)dz=z∣=1iz(z2n+z2n)z2λz4λdz=z=1i(z2n+1+z2n+1)λz4z2+λdzletputφ(z)=i(z2n+1+z2n+1)λz4z2+λ.polesofφ?λz4z2+λ=0Δ=14λ2ifΔ0therootsarerealsz12=1+14λ22andz22=114λ22z1=ξ1+14λ22andz2=ξ114λ22withξ2=1andwegetRφ(z)dx=2iπiRes(φ,xi)ifΔ<0Δ=(i4λ21)2z12=1+i4λ212z1=ξ1+i4λ212z22=1i4λ212z2=ξ1i4λ212andwechoosetherootswichverifyzi∣⩽1....becontinued

Terms of Service

Privacy Policy

Contact: info@tinkutara.com