All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 32341 by abdo imad last updated on 23/Mar/18
letgiveλfromRandλ2≠1andIn(λ)=∫0πcos(nt)1−2λcost+λ2dt.calculateIn(λ).
Commented by abdo imad last updated on 01/Apr/18
ch.t=2xgiveIn(λ)=2∫02πcos(2nx)1−2λcos(2x)+λ2dxafterweusethech.eix=zIn(λ)=2∫∣z∣=1z2n+z−2n21−2λz2+z−22dziz=2∫∣z∣=1z2n+z−2niz(2−2λ(z2+z−2))dz=∫∣z∣=1z2n+z−2niz(1−λz2−λz−2)=∫∣z∣=1−i(z2n+z−2n)z(1−λz2−λz2)dz=∫∣z∣=1−iz(z2n+z−2n)z2−λz4−λdz=∫∣z∣=1i(z2n+1+z−2n+1)λz4−z2+λdzletputφ(z)=i(z2n+1+z−2n+1)λz4−z2+λ.polesofφ?λz4−z2+λ=0⇒Δ=1−4λ2ifΔ⩾0therootsarerealsz12=1+1−4λ22andz22=1−1−4λ22⇒z1=ξ1+1−4λ22andz2=ξ1−1−4λ22withξ2=1andweget∫Rφ(z)dx=2iπ∑iRes(φ,xi)ifΔ<0Δ=(i4λ2−1)2⇒z12=1+i4λ2−12⇒z1=ξ1+i4λ2−12z22=1−i4λ2−12⇒z2=ξ1−i4λ2−12andwechoosetherootswichverify∣zi∣⩽1....becontinued
Terms of Service
Privacy Policy
Contact: info@tinkutara.com