All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 33120 by abdo imad last updated on 10/Apr/18
letgiveα>0findthevalueof∫01dx(1−x)(1+αx).
Answered by MJS last updated on 11/Apr/18
(1−x)(1+αx)=−αx2+(α−1)x+1∫dxax2+bx+c=−1−asin−12ax+bb2−4ac;a<0∫10dx−αx2+(α−1)x+1=[−1αsin−1−2αx+α−1(α−1)2+4α]01==−1α[sin−1−2αx+α−1α+1]01==−1α(sin−1−α−1α+1−sin−1α−1α+1)==1α(sin−11+sin−1α−1α+1)==1α(π2+sin−1α−1α+1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com