Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 33120 by abdo imad last updated on 10/Apr/18

let give α>0 find the value of  ∫_0 ^1     (dx/(√((1−x)(1+αx)))) .

letgiveα>0findthevalueof01dx(1x)(1+αx).

Answered by MJS last updated on 11/Apr/18

(1−x)(1+αx)=−αx^2 +(α−1)x+1  ∫(dx/(√(ax^2 +bx+c)))=−(1/(√(−a)))sin^(−1) ((2ax+b)/(√(b^2 −4ac))); a<0  ∫_0 ^1 (dx/(√(−αx^2 +(α−1)x+1)))=[−(1/(√α))sin^(−1) ((−2αx+α−1)/(√((α−1)^2 +4α)))]_0 ^1 =  =−(1/(√α))[sin^(−1) ((−2αx+α−1)/(α+1))]_0 ^1 =  =−(1/(√α))(sin^(−1) ((−α−1)/(α+1))−sin^(−1) ((α−1)/(α+1)))=  =(1/(√α))(sin^(−1) 1+sin^(−1) ((α−1)/(α+1)))=  =(1/(√α))((π/2)+sin^(−1) ((α−1)/(α+1)))

(1x)(1+αx)=αx2+(α1)x+1dxax2+bx+c=1asin12ax+bb24ac;a<010dxαx2+(α1)x+1=[1αsin12αx+α1(α1)2+4α]01==1α[sin12αx+α1α+1]01==1α(sin1α1α+1sin1α1α+1)==1α(sin11+sin1α1α+1)==1α(π2+sin1α1α+1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com