Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 34222 by abdo imad last updated on 03/May/18

let give the sequence of integrals  J_n =∫_0 ^∞  x^n   e^(−(x^2 /2)) dx  1) prove that J_n =(n−1)J_(n−2)    ∀n≥2  2) calculate J_(2p)  and J_(2p+1)  by using factoriels.  3) prove that  ∀n≥1   J_n ^2   ≤J_(n−1)  . J_(n+1) .  4)prove that  ((2^(2p) (p!)^2 )/((2p)!)) (1/(√(2p+1))) ≤J_0  ≤ ((2^(2p)  (p!)^2 )/((2p)!)) (1/(√(2p)))  5) find a equivalent of  ((2^(2p) (p!)^2 )/((2p)!))  (p→+∞)

letgivethesequenceofintegralsJn=0xnex22dx1)provethatJn=(n1)Jn2n22)calculateJ2pandJ2p+1byusingfactoriels.3)provethatn1Jn2Jn1.Jn+1.4)provethat22p(p!)2(2p)!12p+1J022p(p!)2(2p)!12p5)findaequivalentof22p(p!)2(2p)!(p+)

Commented by candre last updated on 03/May/18

J_n =∫_0 ^∞ x^n e^(−(x^2 /2)) dx  u=x^(n−1) ⇒du=(n−1)x^(n−2) dx  dv=xe^(−(x^2 /2)) dx⇒v=−e^(−(x^2 /2))   =−[x^(n−1) e^(−(x^2 /2)) ]_0 ^∞ +(n−1)∫x^(n−2) e^(−(x^2 /2)) dx  =(n−1)J_(n−2)   ∫xe^(−(x^2 /2)) dx=−∫e^u du=−e^u =−e^(−(x^2 /2))   u=−(x^2 /2)⇒du=−xdx

Jn=0xnex22dxu=xn1du=(n1)xn2dxdv=xex22dxv=ex22=[xn1ex22]0+(n1)xn2ex22dx=(n1)Jn2xex22dx=eudu=eu=ex22u=x22du=xdx

Commented by candre last updated on 03/May/18

J_0 =∫_0 ^∞ e^(−(x^2 /2)) dx  J_0 ^2 =(∫_0 ^∞ e^(−(x^2 /2)) dx)^2 =∫_0 ^∞ e^(−x^2 /2) dx∫_0 ^∞ e^(−y^2 /2) dy  =∫_0 ^∞ ∫_0 ^∞ e^(−((x^2 +y^2 )/2)) dxdy  =∫_0 ^(π/2) ∫_0 ^∞ e^(−(r^2 /2)) rdrdθ  =∫_0 ^(π/2) dθ∫_0 ^∞ e^(−r^2 /2) rdr  u=−r^2 /2⇒du=−rdr  =(π/2)∙∫_(−∞) ^0 e^u du  =(π/2)  J_0 =(√(π/2))

J0=0ex22dxJ02=(0ex22dx)2=0ex2/2dx0ey2/2dy=00ex2+y22dxdy=π/200er22rdrdθ=π/20dθ0er2/2rdru=r2/2du=rdr=π20eudu=π2J0=π2

Commented by candre last updated on 03/May/18

J_(2p) :  J_2 =1∙J_0   J_4 =3∙J_2 =3∙1∙J_0   J_6 =5∙J_4 =5∙3∙1∙J_0   J_(2p) =(2p−1)!!J_0   J_(2p+1) :  J_3 =2∙J_1   J_5 =4∙J_3 =4∙2∙J_1   J_(2p+1) =(2p)!!J_1 =2^p p!J_1

J2p:J2=1J0J4=3J2=31J0J6=5J4=531J0J2p=(2p1)!!J0J2p+1:J3=2J1J5=4J3=42J1J2p+1=(2p)!!J1=2pp!J1

Commented by abdo mathsup 649 cc last updated on 05/May/18

1) let prove that  J_(n+1) = nJ_(n−1)   J_(n+1) = ∫_0 ^∞   x^(n+1)  e^(−(x^2 /2)) dx  =−∫_0 ^∞  x^n (−xe^(−(x^2 /2)) dx) =−([ x^n e^(−(x^2 /2)) ]_0 ^(+∞)  −∫_0 ^∞ n x^(n−1) e^(−(x^2 /2)) dx)  = n ∫_0 ^∞   x^(n−1)  e^(−(x^2 /2))  dx = n J_(n−1)  ⇒  J_n =(n−1)J_(n−2)    ∀n≥2  2) J_(2p)  = (2p−1)J_(2p−2)  ⇒  Π_(p=1) ^n  J_(2p)  =Π_(p=1) ^n  J_(2p−2)  Π_(p=1) ^n  (2p−1)⇒  J_2 .J_4 .....J_(2n) =1.3.5....(2n−1) J_0 .J_2 ....J_(2n−2)  ⇒  J_(2n)  =1.3.5....(2n−1) J_0   =((1.2.3.4......(2n−1)(2n))/(2^n n!)) J_0   =(((2n)!)/(2^n  (n!))) J_0   J_0  = ∫_0 ^∞   e^(−(x^2 /2)) dx =_((√2) t=x)  ∫_0 ^∞    e^(−t^2 )  (√2)dt = (√2) ((√π)/2) =(√(π/2))  ⇒ J_(2n)   = (((2n)!)/(2^n  n!)) (√(π/2))  J_(2p+1)  = 2p J_(2p−1 )  ⇒ Π_(p=1) ^n  J_(2p+1)  = Π_(p=1) ^n (2p) Π_(p=1) ^n  J_(2p−1)   ⇒ J_3 .J_5 .....J_(2n+1) =2^n n!  J_1 .J_3 ....J_(2n−1)   ⇒ J_(2n+1)  = 2^n n!  J_1   J_1 = ∫_0 ^∞  x e^(−(x^2 /2)) dx =−∫_0 ^∞ (−x) e^(−(x^2 /2)) dx  =−[  e^(−(x^2 /2)) ]_0 ^(+∞) = 1 ⇒  J_(2n+1) = 2^n  (n!) .

1)letprovethatJn+1=nJn1Jn+1=0xn+1ex22dx=0xn(xex22dx)=([xnex22]0+0nxn1ex22dx)=n0xn1ex22dx=nJn1Jn=(n1)Jn2n22)J2p=(2p1)J2p2p=1nJ2p=p=1nJ2p2p=1n(2p1)J2.J4.....J2n=1.3.5....(2n1)J0.J2....J2n2J2n=1.3.5....(2n1)J0=1.2.3.4......(2n1)(2n)2nn!J0=(2n)!2n(n!)J0J0=0ex22dx=2t=x0et22dt=2π2=π2J2n=(2n)!2nn!π2J2p+1=2pJ2p1p=1nJ2p+1=p=1n(2p)p=1nJ2p1J3.J5.....J2n+1=2nn!J1.J3....J2n1J2n+1=2nn!J1J1=0xex22dx=0(x)ex22dx=[ex22]0+=1J2n+1=2n(n!).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com