Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 29972 by abdo imad last updated on 14/Feb/18

let give ∣x∣<1 find   ∫_0 ^(π/2)      (dθ/(√(1−x^2 cos^2 θ))) .

letgivex∣<1find0π2dθ1x2cos2θ.

Commented by abdo imad last updated on 18/Feb/18

we have (1+u^ )^α   =1+αu +((α(α−1))/(2!))u^2  +...  =1+Σ_(n=1) ^∞   ((α(α−1)...(α−n+1))/(n!))u^n    with∣u∣<1 we have  ∣xcosθ∣<1 ⇒ (1/(√(1−x^2 cos^2 θ)))=(1−(xcosθ)^2 )^(−(1/2))   =1+Σ_(n=1) ^∞   (((−(1/2))(−(1/2)−1)...(−(1/2)−n+1))/(n!)) x^(2n)  cos^(2n) θ let  put A_n =(−(1/2))(−(1/2)−1)...(−(1/2)−n+1) ⇒  ∫_0 ^(π/2)     (dθ/(√(1−x^2 cos^2 θ)))=(π/2) +Σ_(n=1) ^∞   (A_n /(n!))x^(2n)  ∫_0 ^(π/2)  cos^(2n) θ dθ but  w_n =∫_0 ^(π/2)  cos^(2n) θdθ is known (wallis integral) so  ∫_0 ^(π/2)    (dθ/(√(1−x^2  cos^2 θ))) = (π/2) +Σ_(n=1) ^∞  ((A_n  B_n )/(n!)) x^(2n)  .

wehave(1+u)α=1+αu+α(α1)2!u2+...=1+n=1α(α1)...(αn+1)n!unwithu∣<1wehavexcosθ∣<111x2cos2θ=(1(xcosθ)2)12=1+n=1(12)(121)...(12n+1)n!x2ncos2nθletputAn=(12)(121)...(12n+1)0π2dθ1x2cos2θ=π2+n=1Ann!x2n0π2cos2nθdθbutwn=0π2cos2nθdθisknown(wallisintegral)so0π2dθ1x2cos2θ=π2+n=1AnBnn!x2n.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com