All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 29972 by abdo imad last updated on 14/Feb/18
letgive∣x∣<1find∫0π2dθ1−x2cos2θ.
Commented by abdo imad last updated on 18/Feb/18
wehave(1+u)α=1+αu+α(α−1)2!u2+...=1+∑n=1∞α(α−1)...(α−n+1)n!unwith∣u∣<1wehave∣xcosθ∣<1⇒11−x2cos2θ=(1−(xcosθ)2)−12=1+∑n=1∞(−12)(−12−1)...(−12−n+1)n!x2ncos2nθletputAn=(−12)(−12−1)...(−12−n+1)⇒∫0π2dθ1−x2cos2θ=π2+∑n=1∞Ann!x2n∫0π2cos2nθdθbutwn=∫0π2cos2nθdθisknown(wallisintegral)so∫0π2dθ1−x2cos2θ=π2+∑n=1∞AnBnn!x2n.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com