All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35438 by prof Abdo imad last updated on 19/May/18
letm>0and0<a<b1)calculate∫0∞cos(mx)(x2+a2)(x2+b2)dx2)findthevalueof∫0∞cos(2x)(x2+1)(x2+3)dx
Commented by prof Abdo imad last updated on 21/May/18
letputI=∫0∞cos(mx)(x2+a2)(x2+b2)dx2I=∫−∞+∞cos(mx)(x2+a2)(x2+b2)dx=Re(∫−∞+∞eimx(x2+a2)(x2+b2)dx)letconsiderthecomplexfunctionφ(z)=eimz(x2+a2)(x2+b2)φ(z)=eimz(x−ia)(x+ia)(x−ib)(x+ib)thepolesofφareia,−ia,ib,−ib∫−∞+∞φ(z)dz=2iπ{Res(φ,ia)+Res(φ,ib)}Res(φ,ia)=eim(ia)2ia(b2−a2)=e−ma2ia(b2−a2)Res(φ,ib)=eim(ib)2ib(a2−b2)=e−mb2ib(a2−b2)∫−∞+∞φ(z)dz=2iπ{e−ma2ia(b2−a2)+e−mb2ib(a2−b2)}=πae−mab2−a2−πbe−mbb2−a2=πb2−a2{e−maa−e−mbb}⇒I=π2(a2−b2){e−mbb−e−maa}2)lettakem=2,a=1,b=3weget∫0∞cos(2x)(x2+1)(x2+3)=π2(1−3){e−233−e−21}=−π4{e−233−e−2}=π4{e−2−e−233}.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com