Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38120 by maxmathsup by imad last updated on 22/Jun/18

let  n from N and  find the value of  A_n = ∫_1 ^(+∞)    (dt/(t^n (√(t−1))))

letnfromNandfindthevalueofAn=1+dttnt1

Commented by math khazana by abdo last updated on 26/Jun/18

let A_n = ∫_1 ^(+∞)    (dt/(t^n (√(t−1)))) changement (√(t−1))=x   give A_n = ∫_0 ^(+∞)     ((2xdx)/((x^2 +1)^n x)) =∫_(−∞) ^(+∞)    (dx/((x^2  +1)^n ))  let ϕ(z) = (1/((z^2 +1)^n ))  have i and −i for poles  (with multiplicity n)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i)  (1/((n−1)!)){ (z−i)^n ϕ(z)}^((n−1))   =lim_(z→i)   (1/((n−1)!)) {  (1/((z+i)^n ))}^((n−1))   =lim_(z→i)   (1/((n−1)!)) { (z+i)^(−n) }^((n−1))   let detemine {(z+i)^(−n) }^((p))   {(z+i)^(−n) }^((1)) =−n(z+i)^(−n−1)   {(z+i)^(−n) }^((2)) =(−1)^2 n(n+1)(z+i)^(−(n+2))   {(z+i)^(−n) }^((p)) =(−1)^p n(n+1)(n+2)...(n+p−1)(z+i)^(−(n+p))   {(z+i)^(−n) }^((n−1)) =(−1)^(n−1) n(n+1)....(2n−2)(z+i)^(−(2n−1))   Res(ϕ,i)= (1/((n−1)!))(−1)^(n−1) n(n+1)...(2n−2) (1/((2i)^(2n−1) ))  =(1/((n−1)!))(−1)^(n−1) n(n+1)...(2n−2).(i/(2^(2n−1) .(−1)^n ))  ∫_(−∞) ^(+∞)  ϕ(z)dz=  2iπ (−i)((n(n+1)(n+2)...(2n−2))/2^(2n−1) )  =4π ((n(n+1)(n+2)....(2n−2))/2^(2n) ) ⇒  A_n = ((n(n+1)(n+2)....(2n−2))/2^(2n−2) ) .

letAn=1+dttnt1changementt1=xgiveAn=0+2xdx(x2+1)nx=+dx(x2+1)nletφ(z)=1(z2+1)nhaveiandiforpoles(withmultiplicityn)+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(n1)!{(zi)nφ(z)}(n1)=limzi1(n1)!{1(z+i)n}(n1)=limzi1(n1)!{(z+i)n}(n1)letdetemine{(z+i)n}(p){(z+i)n}(1)=n(z+i)n1{(z+i)n}(2)=(1)2n(n+1)(z+i)(n+2){(z+i)n}(p)=(1)pn(n+1)(n+2)...(n+p1)(z+i)(n+p){(z+i)n}(n1)=(1)n1n(n+1)....(2n2)(z+i)(2n1)Res(φ,i)=1(n1)!(1)n1n(n+1)...(2n2)1(2i)2n1=1(n1)!(1)n1n(n+1)...(2n2).i22n1.(1)n+φ(z)dz=2iπ(i)n(n+1)(n+2)...(2n2)22n1=4πn(n+1)(n+2)....(2n2)22nAn=n(n+1)(n+2)....(2n2)22n2.

Commented by math khazana by abdo last updated on 26/Jun/18

∫_(−∞) ^(+∞)   ϕ(z)dz= ((4π)/((n−1)!)) ((n(n+1)(n+2)...(2n−2))/2^(2n) )  A_n = (π/((n−1)!)) ((n(n+1)(n+2)....(2n−2))/2^(2n−2) ) .

+φ(z)dz=4π(n1)!n(n+1)(n+2)...(2n2)22nAn=π(n1)!n(n+1)(n+2)....(2n2)22n2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com