All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 35056 by math khazana by abdo last updated on 14/May/18
letp(x)=(1+jx)n−(1−jx)n1)findtherootsofp(x)2)factorizep(x)insideC[x]j=ei2π3.
Commented by math khazana by abdo last updated on 10/Jun/18
p(x)=0⇔(1−jx)n(1+jx)n=1⇔(1−jx1+jx)n=1therootsofzn=1arethecomplexzk=ei2kπnk∈[[0,n−1]]sotherootsofp(x)arethecomplexZk/1−jZk1+jZk=zk⇔1−jZk=zk+jzkZk⇔j(1+zk)Zk=1−zk⇔Zk=1j1−zk1+zk⇒jZk=1−cos(2kπn)−isin(2kπn)1+cos(2kπn)+isin(2kπn)=2sin2(kπn)−2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=−isin(kπn)eikπncos(kπn)eikπn=−itan(kπn)⇒Zk=−ijtan(kπn)=e−iπ2e−i2π3tan(kπn)=e−i(7π6)tan(kπn)withn∈[[1,n−1]]
p(x)=λ∏k=1n−1(x−Zk)=λ∏k=1n−1(x−e−i7π6tan(kπn))λisthedominentcoefficientletfinditwehavep(x)=(1+jx)n−(1−jx)n=∑k=0nCnkjkxk−∑k=0nCnk(−j)kxk=∑k=0nCnk(jk−(−j)k)xk⇒λ=Cnn(jn−(−j)n)=ei2nπ3−(−1)nei2nπ3=(1−(−1)n)ei2nπ3⇒p(x)={1−(−1)n}ei2nπ3∏k=1n(x−e−i7π6tan(kπn)).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com