Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 35056 by math khazana by abdo last updated on 14/May/18

let p(x)=(1+jx)^n  −(1−jx)^n   1) find the roots of p(x)  2)factorize p(x) inside C[x]  j =e^(i((2π)/3))  .

letp(x)=(1+jx)n(1jx)n1)findtherootsofp(x)2)factorizep(x)insideC[x]j=ei2π3.

Commented by math khazana by abdo last updated on 10/Jun/18

p(x)=0 ⇔ (((1−jx)^n )/((1+jx)^n )) =1⇔(((1−jx)/(1+jx)))^n  =1 the roots  of z^n =1 are the complex z_k  =e^(i((2kπ)/n))   k∈[[0,n−1]]  so the roots of p(x) are the complex Z_k  /  ((1−jZ_k )/(1+jZ_k )) =z_k  ⇔1−jZ_k  =z_k  +jz_k Z_k   ⇔  j(1+z_k )Z_k =1−z_k  ⇔Z_k  =(1/j) ((1−z_k )/(1+z_k )) ⇒  j Z_k = ((1 −cos(((2kπ)/n)) −isin(((2kπ)/n)))/(1+cos(((2kπ)/n)) +i sin(((2kπ)/n))))  =((2sin^2 (((kπ)/n)) −2i sin(((kπ)/n))cos(((kπ)/n)))/(2cos^2 (((kπ)/n)) +2isin(((kπ)/n))cos(((kπ)/n))))  =((−isin(((kπ)/n))e^(i((kπ)/n)) )/(cos(((kπ)/n))e^(i((kπ)/n)) )) =−i tan(((kπ)/n)) ⇒  Z_(k ) = ((−i)/j)tan(((kπ)/n)) =e^(−i(π/2))  e^(−i((2π)/3))   tan(((kπ)/n))  = e^(−i( ((7π)/6))) tan(((kπ)/n))   with n ∈[[1,n−1]]

p(x)=0(1jx)n(1+jx)n=1(1jx1+jx)n=1therootsofzn=1arethecomplexzk=ei2kπnk[[0,n1]]sotherootsofp(x)arethecomplexZk/1jZk1+jZk=zk1jZk=zk+jzkZkj(1+zk)Zk=1zkZk=1j1zk1+zkjZk=1cos(2kπn)isin(2kπn)1+cos(2kπn)+isin(2kπn)=2sin2(kπn)2isin(kπn)cos(kπn)2cos2(kπn)+2isin(kπn)cos(kπn)=isin(kπn)eikπncos(kπn)eikπn=itan(kπn)Zk=ijtan(kπn)=eiπ2ei2π3tan(kπn)=ei(7π6)tan(kπn)withn[[1,n1]]

Commented by math khazana by abdo last updated on 10/Jun/18

p(x) =λ Π_(k=1) ^(n−1 )  ( x−Z_k ) =λ Π_(k=1) ^(n−1)  (x−e^(−i((7π)/6)) tan(((kπ)/n)))  λ is the dominentcoefficient  let find it  we have p(x) =(1+jx)^n  −(1−jx)^n   = Σ_(k=0) ^n   C_n ^k  j^k x^k   −Σ_(k=0) ^n  C_n ^k  (−j)^k  x^k   = Σ_(k=0) ^n   C_n ^k (j^k  −(−j)^k )x^k  ⇒  λ = C_n ^n  (j^n  −(−j)^n ) =e^(i((2nπ)/3))  −(−1)^n  e^(i((2nπ)/3))   =(1−(−1)^n ) e^(i((2nπ)/3))  ⇒  p(x) ={1−(−1)^n }e^(i((2nπ)/3))  Π_(k=1) ^n (x−e^(−i((7π)/6))  tan(((kπ)/n))).

p(x)=λk=1n1(xZk)=λk=1n1(xei7π6tan(kπn))λisthedominentcoefficientletfinditwehavep(x)=(1+jx)n(1jx)n=k=0nCnkjkxkk=0nCnk(j)kxk=k=0nCnk(jk(j)k)xkλ=Cnn(jn(j)n)=ei2nπ3(1)nei2nπ3=(1(1)n)ei2nπ3p(x)={1(1)n}ei2nπ3k=1n(xei7π6tan(kπn)).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com