All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 42195 by math khazana by abdo last updated on 20/Aug/18
letp(x)=x10−11)findrootsofp(x)2)factorizeinsideC[x]p(x{3)factorizeinsideR[x]p(x).
Answered by maxmathsup by imad last updated on 21/Aug/18
1)p(z)=0⇔z10−1=0⇔z10=1ifz=reiθwegetr10ei10θ=ei2kπ⇒r=1andθ=2kπ10=kπ5sotherootsofp(x)arezk=eikπ5withk∈[[0,9]]2)p(x)=∏k=09(x−zk)=∏k=09(x−eikπ5)3)generallyletdecmposeq(x)=x2n−1therootsarezk=eiknnwithk∈[[0,2n−1]]⇒q(x)=∏k=02n−1(x−eikπn)butz0=1z1=eiπnz2=ei2πnzn−1=ei(n−1)πnzn=−1zn+1=ei(n+1)πn...z2n−1=ei(2n−1)πn⇒z−1=e−iπn=e2iπ−iπn=ei(2n−1)πn=z−2n−1.....⇒z2n−p=z−p⇒q(x)=(x2−1)∏k=1n−1(x−zk)(x−z−k)=(x2−1)∏k=1n−1(x2−2cos(kπn)x+1)forn=5wegetp(x)=(x2−1)∏k=14(x2−2cos(kπ5)x+1)=(x2−1)(x2−2cos(π5)x+1)(x2−2cos(2π5)x+1)(x2−2cos(3π5)x+1)(x2−2cos(4π5)x+1).=(x2−2cos(π5)x+1)(x2+2cos(π5)x+1)(x2−2cos(2π5)x+1)(x2+2cos(2π5)x+1).
Commented by maxmathsup by imad last updated on 21/Aug/18
p(x)=(x2−1)(x2−2cos(π5)x+1)(x2+2cos(π5)x+1)(x2−2cos(2π5)x+1)(x2+2cos(2π5)x+1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com