Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 42195 by math khazana by abdo last updated on 20/Aug/18

let p(x)=x^(10) −1  1) find roots of p(x)  2) factorize i nside  C[x] p(x{  3) factorize inside R[x] p(x) .

letp(x)=x1011)findrootsofp(x)2)factorizeinsideC[x]p(x{3)factorizeinsideR[x]p(x).

Answered by maxmathsup by imad last updated on 21/Aug/18

1) p(z)=0 ⇔ z^(10) −1=0 ⇔ z^(10)  =1  if z=r e^(iθ)   we get r^(10) e^(i10θ)  =e^(i2kπ)  ⇒  r =1 and θ =((2kπ)/(10)) =((kπ)/5)  so the roots of p(x)are z_k =e^(i((kπ)/5))   with k∈[[0,9]]  2) p(x) =Π_(k=0) ^9 (x−z_k ) =Π_(k=0) ^9 (x−e^((ikπ)/5) )  3) generally let decmpose q(x) =x^(2n)  −1 the roots are z_k =e^((ikn)/n)  with  k ∈[[0,2n−1]] ⇒q(x)=Π_(k=0) ^(2n−1) (x−e^((ikπ)/n) )  but z_0 =1  z_1 =e^((iπ)/n)   z_2 =e^((i2π)/n)        z_(n−1) =e^((i(n−1)π)/n)   z_n =−1    z_(n+1) =e^((i(n+1)π)/n)    ...z_(2n−1) =e^((i(2n−1)π)/n)   ⇒z_1 ^−   =e^(−((iπ)/n))  =e^(2iπ−((iπ)/n))  = e^(i(((2n−1)π)/n))   =z_(2n−1) ^−   .....⇒z_(2n−p)  =z_p ^−  ⇒  q(x) =(x^2 −1) Π_(k=1) ^(n−1) (x−z_k )(x−z_k ^− )=(x^2 −1)Π_(k=1) ^(n−1) (x^2  −2cos(((kπ)/n))x +1)  for n=5  we get  p(x)=(x^2 −1)Π_(k=1) ^4 (x^2  −2cos(((kπ)/5))x +1)  =(x^2  −1)(x^2  −2cos((π/5))x +1)(x^2  −2cos(((2π)/5))x+1)(x^2  −2cos(((3π)/5))x+1)(x^2 −2cos(((4π)/5))x+1).  =(x^2 −2cos((π/5))x+1)(x^2  +2cos((π/5))x+1)(x^2  −2cos(((2π)/5))x+1)(x^2  +2cos(((2π)/5))x+1).

1)p(z)=0z101=0z10=1ifz=reiθwegetr10ei10θ=ei2kπr=1andθ=2kπ10=kπ5sotherootsofp(x)arezk=eikπ5withk[[0,9]]2)p(x)=k=09(xzk)=k=09(xeikπ5)3)generallyletdecmposeq(x)=x2n1therootsarezk=eiknnwithk[[0,2n1]]q(x)=k=02n1(xeikπn)butz0=1z1=eiπnz2=ei2πnzn1=ei(n1)πnzn=1zn+1=ei(n+1)πn...z2n1=ei(2n1)πnz1=eiπn=e2iπiπn=ei(2n1)πn=z2n1.....z2np=zpq(x)=(x21)k=1n1(xzk)(xzk)=(x21)k=1n1(x22cos(kπn)x+1)forn=5wegetp(x)=(x21)k=14(x22cos(kπ5)x+1)=(x21)(x22cos(π5)x+1)(x22cos(2π5)x+1)(x22cos(3π5)x+1)(x22cos(4π5)x+1).=(x22cos(π5)x+1)(x2+2cos(π5)x+1)(x22cos(2π5)x+1)(x2+2cos(2π5)x+1).

Commented by maxmathsup by imad last updated on 21/Aug/18

p(x)=(x^2 −1)(x^2 −2cos((π/5))x+1)(x^2  +2cos((π/5))x+1)(x^2  −2cos(((2π)/5))x+1)(x^2  +2cos(((2π)/5))x+1).

p(x)=(x21)(x22cos(π5)x+1)(x2+2cos(π5)x+1)(x22cos(2π5)x+1)(x2+2cos(2π5)x+1).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com