Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 175624 by infinityaction last updated on 04/Sep/22

let p(x) = x^6 +ax^5 +bx^4 +cx^3 +dx^2 +ex+f    be a polynomial function such    that  p(1) = 1 ; p(2) = 2 ;  p(3) = 3    p(4) = 4 ; p(5) = 5 ; p(6) = 6  then    find  p(7) = ?

letp(x)=x6+ax5+bx4+cx3+dx2+ex+fbeapolynomialfunctionsuchthatp(1)=1;p(2)=2;p(3)=3p(4)=4;p(5)=5;p(6)=6thenfindp(7)=?

Answered by cortano1 last updated on 04/Sep/22

p(x)=(x−1)(x−2)(x−3)(x−4)(x−5)(x−6)+x  p(7)=6.5.4.3.2.1+7=6!+7            = 727

p(x)=(x1)(x2)(x3)(x4)(x5)(x6)+xp(7)=6.5.4.3.2.1+7=6!+7=727

Commented by BaliramKumar last updated on 05/Sep/22

p(n) = ?                   [ n > 6 ]

p(n)=?[n>6]

Answered by leodera last updated on 04/Sep/22

  p(x) = (x−1)(x−2)(x−3)(x−4)(x−5)(x−6)+x  p(7) = 6! + 7 = 720+7 = 727

p(x)=(x1)(x2)(x3)(x4)(x5)(x6)+xp(7)=6!+7=720+7=727

Answered by floor(10²Eta[1]) last updated on 04/Sep/22

p(1)=1⇒p(x)=(x−1)a(x)+1  p(2)=a(2)+1=2⇒a(2)=1⇒a(x)=(x−2)b(x)+1  p(x)=(x−1)((x−2)b(x)+1)+1  p(3)=2(b(3)+1)+1=3⇒b(3)=0⇒b(x)=(x−3)c(x)  p(x)=(x−1)((x−2)(x−3)c(x)+1)+1  p(4)=3(2c(4)+1)+1=4⇒c(4)=0⇒c(x)=(x−4)d(x)  ⇒p(x)=(x−1)[(x−2)(x−3)(x−4)d(x)+1)+1  p(5)=4[3.2d(5)+1]+1=5⇒d(5)=0⇒d(x)=(x−5)e(x)  p(x)=(x−1)[(x−2)(x−3)(x−4)(x−5)e(x)+1]+1  p(6)=5[4.3.2e(6)+1]+1=6⇒e(6)=0⇒e(x)=(x−6)C  ⇒p(x)=(x−1)[(x−2)(x−3)(x−4)(x−5)(x−6)C+1]+1  =(x−1)(x−2)(x−3)(x−4)(x−5)(x−6)C+x  p(7)=6!C+7=720C+7, C∈R^∗   but C=1 because p(x)=x^6 +ax^5 +...  ⇒p(7)=727

p(1)=1p(x)=(x1)a(x)+1p(2)=a(2)+1=2a(2)=1a(x)=(x2)b(x)+1p(x)=(x1)((x2)b(x)+1)+1p(3)=2(b(3)+1)+1=3b(3)=0b(x)=(x3)c(x)p(x)=(x1)((x2)(x3)c(x)+1)+1p(4)=3(2c(4)+1)+1=4c(4)=0c(x)=(x4)d(x)p(x)=(x1)[(x2)(x3)(x4)d(x)+1)+1p(5)=4[3.2d(5)+1]+1=5d(5)=0d(x)=(x5)e(x)p(x)=(x1)[(x2)(x3)(x4)(x5)e(x)+1]+1p(6)=5[4.3.2e(6)+1]+1=6e(6)=0e(x)=(x6)Cp(x)=(x1)[(x2)(x3)(x4)(x5)(x6)C+1]+1=(x1)(x2)(x3)(x4)(x5)(x6)C+xp(7)=6!C+7=720C+7,CRbutC=1becausep(x)=x6+ax5+...p(7)=727

Commented by infinityaction last updated on 04/Sep/22

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com