Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36429 by prof Abdo imad last updated on 02/Jun/18

let  ϕ(λ) = ∫_(λ/π) ^(π/λ) (1+(1/x^2 ))arctan(x)dx with λ>0  1) find a simple form of ϕ(λ)  2) calculate ϕ^′ (λ).

letφ(λ)=λππλ(1+1x2)arctan(x)dxwithλ>01)findasimpleformofφ(λ)2)calculateφ(λ).

Commented by abdo mathsup 649 cc last updated on 03/Jun/18

let integrate by parts  u^′  =1+(1/x^2 ) and  v^′  = arctan(x)   ϕ(λ) = [(1−(1/x))arctanx]_(λ/π) ^(π/λ)    −∫_(λ/π) ^(π/λ)   (1−(1/x)) (dx/(1+x^2 ))  =(1−(λ/π))arctan((π/λ)) −(1−(π/λ)) arctan((λ/π))  −∫_(λ/π) ^(π/λ)    (((x−1)dx)/(x(1+x^2 ))) but  ∫_(λ/π) ^(π/λ)    ((x−1)/(x(1+x^2 )))dx = ∫_(λ/π) ^(π/λ)    (dx/(1+x^2 )) −∫_(λ/π) ^(π/λ)    (dx/(x(1+x^2 )))  = arctan((π/λ)) −arctan((λ/π)) −∫_(λ/π) ^(π/λ)    (dx/(x(1+x^2 ))) but  F(x)= (1/(x(1+x^2 )))  = (a/x) +((bx+c)/(x^2  +1))  a= 1    and lim_(x→+∞) x F(x)=0= a+b ⇒b=−1  c=0 ⇒ ∫_(λ/π) ^(π/λ)   (dx/(x(1+x^2 ))) = ∫_(λ/π) ^(π/λ)   { (1/x) −(x/(1+x^2 ))}dx  =[ln ∣x∣ −(1/2)ln(1+x^2 )]_(λ/π) ^(π/λ)   =[ln∣  (x/(√(1+x^2 )))∣]_(λ/π) ^(π/λ)  = ln∣ (π/(λ(√(1+((π/λ))^2 ))))∣−ln∣ (λ/(π(√(1+((λ/π))^2 ))))  ϕ(λ) =(1−(λ/π))arctan((π/λ)) −(1−(π/λ))arctan((λ/π))  −ln∣(π/(λ(√(1+((π/λ))^2 ))))∣ +ln∣  (λ/(π(√(1+((λ/π))^2 ))))∣ .

letintegratebypartsu=1+1x2andv=arctan(x)φ(λ)=[(11x)arctanx]λππλλππλ(11x)dx1+x2=(1λπ)arctan(πλ)(1πλ)arctan(λπ)λππλ(x1)dxx(1+x2)butλππλx1x(1+x2)dx=λππλdx1+x2λππλdxx(1+x2)=arctan(πλ)arctan(λπ)λππλdxx(1+x2)butF(x)=1x(1+x2)=ax+bx+cx2+1a=1andlimx+xF(x)=0=a+bb=1c=0λππλdxx(1+x2)=λππλ{1xx1+x2}dx=[lnx12ln(1+x2)]λππλ=[lnx1+x2]λππλ=lnπλ1+(πλ)2lnλπ1+(λπ)2φ(λ)=(1λπ)arctan(πλ)(1πλ)arctan(λπ)lnπλ1+(πλ)2+lnλπ1+(λπ)2.

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18

∫_(λ/Π) ^(Π/λ)  (((1+x^2 )/x^2 ))tan^(−1) x dx  I=∫(1+(1/x^2 ))tan^(−1) xdx  =tan^(−1) x(x+((−1)/x))−∫(1/(1+x^2 ))×(((x^2 −1)/x))dx  =(((x^2 −1)/x))tan^(−1) x−∫((x^2 −1)/(x(x^2 +1)))  =(((x^2 −1)/x))tan^(−1) x −∫((x^2 +1−2)/(x(x^2 +1)))dx  =(((x^2 −1)/x))tan^(−1) x−∫(dx/x)+2∫((xdx)/(x^2 (x^2 +1)))  =(((x^2 −1)/x))tan^(−1) x−lnx+∫(dt/(t(t+1)))  =(((x^2 −1)/x))tan^(−1) x−lnx+∫((t+1−t)/((t+1)t))dt  =(((x^2 −1)/x))tan^(−1) x−lnx+ln((t/(t+1)))  =(((x^2 −1)/x))tan^(−1) x−lnx+ln((x^2 /(x^2 +1)))  now put upper and lower limit

λΠΠλ(1+x2x2)tan1xdxI=(1+1x2)tan1xdx=tan1x(x+1x)11+x2×(x21x)dx=(x21x)tan1xx21x(x2+1)=(x21x)tan1xx2+12x(x2+1)dx=(x21x)tan1xdxx+2xdxx2(x2+1)=(x21x)tan1xlnx+dtt(t+1)=(x21x)tan1xlnx+t+1t(t+1)tdt=(x21x)tan1xlnx+ln(tt+1)=(x21x)tan1xlnx+ln(x2x2+1)nowputupperandlowerlimit

Terms of Service

Privacy Policy

Contact: info@tinkutara.com