All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36429 by prof Abdo imad last updated on 02/Jun/18
letφ(λ)=∫λππλ(1+1x2)arctan(x)dxwithλ>01)findasimpleformofφ(λ)2)calculateφ′(λ).
Commented by abdo mathsup 649 cc last updated on 03/Jun/18
letintegratebypartsu′=1+1x2andv′=arctan(x)φ(λ)=[(1−1x)arctanx]λππλ−∫λππλ(1−1x)dx1+x2=(1−λπ)arctan(πλ)−(1−πλ)arctan(λπ)−∫λππλ(x−1)dxx(1+x2)but∫λππλx−1x(1+x2)dx=∫λππλdx1+x2−∫λππλdxx(1+x2)=arctan(πλ)−arctan(λπ)−∫λππλdxx(1+x2)butF(x)=1x(1+x2)=ax+bx+cx2+1a=1andlimx→+∞xF(x)=0=a+b⇒b=−1c=0⇒∫λππλdxx(1+x2)=∫λππλ{1x−x1+x2}dx=[ln∣x∣−12ln(1+x2)]λππλ=[ln∣x1+x2∣]λππλ=ln∣πλ1+(πλ)2∣−ln∣λπ1+(λπ)2φ(λ)=(1−λπ)arctan(πλ)−(1−πλ)arctan(λπ)−ln∣πλ1+(πλ)2∣+ln∣λπ1+(λπ)2∣.
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
∫λΠΠλ(1+x2x2)tan−1xdxI=∫(1+1x2)tan−1xdx=tan−1x(x+−1x)−∫11+x2×(x2−1x)dx=(x2−1x)tan−1x−∫x2−1x(x2+1)=(x2−1x)tan−1x−∫x2+1−2x(x2+1)dx=(x2−1x)tan−1x−∫dxx+2∫xdxx2(x2+1)=(x2−1x)tan−1x−lnx+∫dtt(t+1)=(x2−1x)tan−1x−lnx+∫t+1−t(t+1)tdt=(x2−1x)tan−1x−lnx+ln(tt+1)=(x2−1x)tan−1x−lnx+ln(x2x2+1)nowputupperandlowerlimit
Terms of Service
Privacy Policy
Contact: info@tinkutara.com