Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 27974 by abdo imad last updated on 18/Jan/18

let put f(t)=∫_0 ^∞   ((e^(−ax)  − e^(−bx) )/x^2 ) e^(−tx^2 )  dx  with t≥0  and a>0 and b>0  find a integral form of f(t).

letputf(t)=0eaxebxx2etx2dxwitht0anda>0andb>0findaintegralformoff(t).

Commented by abdo imad last updated on 20/Jan/18

after verifying that f is derivable on ]0,+∞[ we have   f^, (t)= −∫_0 ^∞  ( e^(−ax)  −e^(−bx) )e^(−tx^2 ) dx  =∫_0 ^∞  e^(−tx^2 −bx) dx −∫_0 ^∞  e^(−tx^2 −ax) dx   but  ∫_0 ^∞  e^(−tx^2 −ax) dx = ∫_0 ^∞   e^(−(  ((√t)x)^2  +2(a/(2(√t)))((√t)x) + (a^2 /(4t)) −(a^2 /(4t)))) dx  =  e^(a^2 /(4t))   ∫_0 ^∞   e^(−((√t)x +(a/(√t)))^2 ) dx     the ch. (√t)x  +(a/(√t))=u give  ∫_0 ^∞   e^(−tx^2 −ax) dx = e^(a^2 /(4t))   ∫_(a/(√t)) ^(+∞)   e^(−u^2 )  (du/(√t))  = (1/(√t)) e^(a^2 /(4t))  (  ∫_0 ^∞  e^(−u^2 ) du − ∫_0 ^(a/(√t))   e^(−u^2 ) du)  = (1/(√t)) e^(a^2 /(4t))   (    ((√π)/2)  − ∫_0 ^(a/(√t))   e^(−u^2 ) du) and by the same manner  we get  ∫_0 ^∞   e^(−tx^2 −bx) dx = (1/(√t)) e^(b^2 /(4t)) (  ((√π)/2) − ∫_0 ^(b/(√t)) e^(−u^2 ) du)  f^′ (t)= ((√π_ )/(2(√t)))(  e^(b^2 /(4t))  − e^(a^2 /(4t)) ) + ∫_0 ^(a/(√t))   e^(−u^2 ) du  −∫_0 ^(b/(√t))   e^(−u^2 ) du  = ((√π)/(2(√t))) (  e^(b^2 /(4t))   − e^(a^2 /(4t)) ) −∫_(a/(√t)) ^(b/(√t))   e^(−u^2 )  du =  ψ(t) ⇒  f(t)= ∫_. ^t  ψ(u)du  +λ  .

afterverifyingthatfisderivableon]0,+[wehavef,(t)=0(eaxebx)etx2dx=0etx2bxdx0etx2axdxbut0etx2axdx=0e((tx)2+2a2t(tx)+a24ta24t)dx=ea24t0e(tx+at)2dxthech.tx+at=ugive0etx2axdx=ea24tat+eu2dut=1tea24t(0eu2du0ateu2du)=1tea24t(π20ateu2du)andbythesamemannerweget0etx2bxdx=1teb24t(π20bteu2du)f(t)=π2t(eb24tea24t)+0ateu2du0bteu2du=π2t(eb24tea24t)atbteu2du=ψ(t)f(t)=.tψ(u)du+λ.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com