Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 42190 by maxmathsup by imad last updated on 19/Aug/18

let   u_n =Σ_(k=1) ^n  (((−1)^k )/(√k))  1) prove that (u_n )is convergente  2) find a equivalent of u_n  when n→+∞

letun=k=1n(1)kk1)provethat(un)isconvergente2)findaequivalentofunwhenn+

Commented by maxmathsup by imad last updated on 21/Aug/18

1) we have lim_(n→+∞)  u_n  = Σ_(k=1) ^∞   (((−1)^k )/(√k))     and this serie is convergente  (alternate serie)  2) we have u_n =Σ_(p=1) ^([(n/2)])    (1/(√(2p))) −Σ_(p=0) ^([((n−1)/2)])  (1/(√(2p+1))) = Σ v_p  −Σw_p   (v_p )is decreasing ⇒ ∫_p ^(p+1)   (dx/(√(2x))) ≤ v_p  ≤ ∫_(p−1) ^p   (dx/(√(2x))) ⇒  Σ_(p=1) ^([(n/2)])   ∫_p ^(p+1)  (dx/(√(2x))) ≤ Σ_(p=1) ^([(n/2)])  v_p   ≤ Σ_(p=1) ^([(n/2)]) ∫_(p−1) ^p   (dx/(√(2x)))  ⇒  ∫_1 ^([(n/2)] +1)   (dx/(√(2x))) ≤ Σ_(p=1) ^([(n/2)])  v_p  ≤  ∫_0 ^([(n/2)])   (dx/(√(2x))) ⇒  (1/(√2))[2(√x)]_1 ^([(n/2)]+1)  ≤ Σ_(p=1) ^([(n/2)]) v_p  ≤(1/(√2))[2(√x)]_0 ^([(n/2)])  ⇒ (√2){(√([(n/2)]+1))−1}≤Σ v_p ≤(√2)(√([(n/2)]))  also (w_p ) is decreasing ⇒ ∫_p ^(p+1)    (dx/(√(2x+1))) ≤ w_p ≤ ∫_(p−1) ^p   (dx/(√(2x+1))) ⇒  Σ_(p=1) ^([((n−1)/2)])   ∫_p ^(p+1)   (dx/(√(2x+1))) ≤ Σ_(p=1) ^([((n−1)/2)]) w_p  ≤ Σ_(p=1) ^([((n−1)/2)])   ∫_(p−1) ^p (dx/(√(2x+1))) ⇒  ∫_1 ^([((n−1)/2)] +1)   (dx/(√(2x+1))) ≤ Σ_(p=1) ^([((n−1)/2)])  w_p   ≤ ∫_0 ^([((n−1)/2)])    (dx/(√(2x +1))) ⇒  [(√(2x+1))]_1 ^((([n−1)/2)]+1)  ≤ Σ_(p=1) ^([((n−1)/2)])  w_p  ≤ [(√(2x+1))]_0 ^([((n−1)/2)])  ⇒  (√(2[((n−1)/2)]+2)) −(√3)≤ Σ_(p=1) ^([((n−1)/2)])  w_p  ≤(√(2[((n−1)/2)]+1))−1  ⇒  (√(2[((n−1)/2)]+2))+1−(√3)≤ Σ_(p=0) ^([((n−1)/2)])  w_p  ≤ (√(2[((n−1)/2)]+1)) −2 ⇒   (√2){(√([(n/2)]+1))−1} +2−(√(2[((n−1)/2)]+1))≤ u_n ≤ (√2)(√([(n/2)])) +(√3)−1−(√(2[((n−1)/2)]+1))  ...be continued ...

1)wehavelimn+un=k=1(1)kkandthisserieisconvergente(alternateserie)2)wehaveun=p=1[n2]12pp=0[n12]12p+1=ΣvpΣwp(vp)isdecreasingpp+1dx2xvpp1pdx2xp=1[n2]pp+1dx2xp=1[n2]vpp=1[n2]p1pdx2x1[n2]+1dx2xp=1[n2]vp0[n2]dx2x12[2x]1[n2]+1p=1[n2]vp12[2x]0[n2]2{[n2]+11}Σvp2[n2]also(wp)isdecreasingpp+1dx2x+1wpp1pdx2x+1p=1[n12]pp+1dx2x+1p=1[n12]wpp=1[n12]p1pdx2x+11[n12]+1dx2x+1p=1[n12]wp0[n12]dx2x+1[2x+1]1[n12]+1p=1[n12]wp[2x+1]0[n12]2[n12]+23p=1[n12]wp2[n12]+112[n12]+2+13p=0[n12]wp2[n12]+122{[n2]+11}+22[n12]+1un2[n2]+312[n12]+1...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com