Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 45792 by maxmathsup by imad last updated on 16/Oct/18

let u_n =Σ_(k=1) ^n  (((−1)^([k]) )/k)  and H_n =Σ_(k=1) ^n  (1/k)  1)calculate u_n  interms of H_n   2)study the convergence of (u_n )  3)study theconvergence of Σ u_(n.)

letun=k=1n(1)[k]kandHn=k=1n1k1)calculateunintermsofHn2)studytheconvergenceof(un)3)studytheconvergenceofΣun.

Commented by maxmathsup by imad last updated on 17/Oct/18

3) lim_(n→+∞) u_n ≠0 ⇒ Σ u_n   diverges..

3)limn+un0Σundiverges..

Commented by maxmathsup by imad last updated on 17/Oct/18

2) convergence of (u_n )?  we have u_(2n) =(1/2) H_n +(1/2) H_(n−1)  −H_(2n−1)   =(1/2)( ln(n)+γ +o((1/n)))+(1/2)(ln(n−1) +γ +o((1/n)))−ln(2n−1)−γ −o((1/n))  =ln(√(n(n+1)))−ln(2n−1) +o((1/n))=ln(((√(n^2 +n))/(2n−1)))+o((1/n))→−ln(2)(n→+∞)  u_(2n+1) =(1/2) H_n   +(1/2) H_n    −H_(2n+1) =H_n −H_(2n+1)   =ln(n) +γ −ln(2n+1)−γ +o((1/n))=ln((n/(2n+1)))+o((1/n))→−ln(2)(n→+∞)  so (u_n ) converges and lim_(n→+∞) u_n =−ln(2).

2)convergenceof(un)?wehaveu2n=12Hn+12Hn1H2n1=12(ln(n)+γ+o(1n))+12(ln(n1)+γ+o(1n))ln(2n1)γo(1n)=lnn(n+1)ln(2n1)+o(1n)=ln(n2+n2n1)+o(1n)ln(2)(n+)u2n+1=12Hn+12HnH2n+1=HnH2n+1=ln(n)+γln(2n+1)γ+o(1n)=ln(n2n+1)+o(1n)ln(2)(n+)so(un)convergesandlimn+un=ln(2).

Commented by maxmathsup by imad last updated on 17/Oct/18

we have u_n =Σ_(k=1) ^n   (((−1)^([k]) )/k) ⇒u_n =Σ_(p=1) ^([(n/2)])  (1/(2p)) −Σ_(p=0) ^([((n−1)/2)])   (1/(2p+1)) but  Σ_(p=1) ^([(n/2)])  (1/(2p)) =(1/2) H_([(n/2)])   Σ_(p=0) ^([((n−1)/2)])   (1/(2p+1)) =1 +(1/3) +(1/5) +....+(1/(2[((n−1)/2)]+1))  =1+(1/2) +(1/3) +(1/4) +.....+(1/(2[((n−1)/2)])) +(1/(2[((n−1)/2)]+1)) −(1/2)(1+(1/2) +....+(1/(2[((n−1)/2)])))  =H_(2[((n−1)/2)]+1)    −(1/2) H_([((n−1)/2)])    ⇒  u_n =(1/2) H_([(n/2)])   +(1/2) H_([((n−1)/2)]) − H_(2[((n−1)/2)]+1)

wehaveun=k=1n(1)[k]kun=p=1[n2]12pp=0[n12]12p+1butp=1[n2]12p=12H[n2]p=0[n12]12p+1=1+13+15+....+12[n12]+1=1+12+13+14+.....+12[n12]+12[n12]+112(1+12+....+12[n12])=H2[n12]+112H[n12]un=12H[n2]+12H[n12]H2[n12]+1

Answered by arcana last updated on 17/Oct/18

1)como  u_n =Σ_(k=1) ^n (((−1)^k )/k)  si n=2t es par (para algun t entero positivo)    u_n =Σ_(k=1) ^(n/2)  (((−1)^(2k−1) )/(2k−1))+Σ_(k=1) ^(n/2)  (((−1)^(2k) )/(2k))  =−Σ_(k=1) ^(n/2)  (1/(2k−1)) + Σ_(k=1) ^(n/2)  (1/(2k))  =−Σ_(k=1) ^(n/2)  (1/(2k−1)) + (1/2)H_(n/2)   tomando m=2k−1, luego  =−Σ_(m=1) ^(n−1)  (1/m) + (1/2)H_(n/2) =(1/2)H_(n/2) −H_(n−1)     si n=2t−1 es impar, tenemos  u_n =Σ_(k=1) ^((n+1)/2)  (((−1)^(2k−1) )/(2k−1))+Σ_(k=1) ^((n−1)/2)  (((−1)^(2k) )/(2k))  =−Σ_(k=1) ^((n+1)/2)  (1/(2k−1)) + Σ_(k=1) ^((n−1)/2)  (1/(2k))  =−Σ_(k=1) ^((n+1)/2)  (1/(2k−1)) + (1/2)H_((n−1)/2)     tomando m=2k−1  =−Σ_(m=1) ^n  (1/m) + (1/2)H_((n−1)/2) =−H_n +(1/2)H_((n−1)/2)

1)comoun=nk=1(1)kksin=2tespar(paraalguntenteropositivo)un=n/2k=1(1)2k12k1+n/2k=1(1)2k2k=n/2k=112k1+n/2k=112k=n/2k=112k1+12Hn/2tomandom=2k1,luego=n1m=11m+12Hn/2=12Hn/2Hn1sin=2t1esimpar,tenemosun=(n+1)/2k=1(1)2k12k1+(n1)/2k=1(1)2k2k=(n+1)/2k=112k1+(n1)/2k=112k=(n+1)/2k=112k1+12H(n1)/2tomandom=2k1=nm=11m+12H(n1)/2=Hn+12H(n1)/2

Commented by maxmathsup by imad last updated on 17/Oct/18

thank you Arkana for this work...

thankyouArkanaforthiswork...

Answered by arcana last updated on 17/Oct/18

3. como  (1/(1+x))=Σ_(k=0) ^∞ (−x)^k   para ∣x∣<1  integrando a ambos lados vemos que  ⇒ln (1+x)=Σ_(k=0) ^∞ (((−1)^(k+1) )/(k+1))∙x^(k+1)   con −1<x≤1. Si x=1, entonces    ln(2)=Σ_(k=0) ^∞ (((−1)^(k+1) )/(k+1))=Σu_n

3.como11+x=k=0(x)kparax∣<1integrandoaambosladosvemosqueln(1+x)=k=0(1)k+1k+1xk+1con1<x1.Six=1,entoncesln(2)=k=0(1)k+1k+1=Σun

Terms of Service

Privacy Policy

Contact: info@tinkutara.com