All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35632 by abdo mathsup 649 cc last updated on 21/May/18
letφ(x)=1a2−x2if∣x∣<aandφ(x)=0if∣x∣⩾afindthefouriertransformofφ.
Commented by abdo mathsup 649 cc last updated on 21/May/18
F(f(x))=12π∫−∞+∞f(t)e−ixtdt.
Commented by abdo mathsup 649 cc last updated on 24/May/18
wehaveF(φ(x))=12π∫−∞+∞φ(t)e−ixtdtandφisevenF(φ(x))o=12π∫−∞+∞φ(t)e−ixtdt=12π∫−aae−ixta2−t2dt=2π∫0acos(xt)a2−t2dtletfindw(x)=∫0acos(xt)a2−t2dtwehsvew′(x)=∫0a−tsin(xt)a2−t2andbypartsw′(x)=[a2−t2sin(xt)]0a−∫0aa2−t2xcos(xt)dt=−x∫0aa2−t2cos(xt)dtchsngementt=asinαgivew′(x)=∫0π2acos(α)cos(axsinα)acosαdα=a2∫0π2cos2(α)cos(axsinα)dα=a2∫0π2cos(α)(cos(α)cos(axsinα))dα=a2{1axsin(axsin(α))cos(α)]0π2−∫0π2−sin(α)sin(axsinα)dα}=∫0π2sin(α)sin(axsinα)dα....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com