Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38458 by maxmathsup by imad last updated on 25/Jun/18

let ∣x∣<1  calculate  F(x)=∫_0 ^1 ln(1+xt^2 )dt  2) find the value of ∫_0 ^1  ln(1 +(1/2)t^2 )dt  3)find the value of A(θ) =∫_0 ^1 ln(1+sinθ t^2 )dt .

letx∣<1calculateF(x)=01ln(1+xt2)dt2)findthevalueof01ln(1+12t2)dt3)findthevalueofA(θ)=01ln(1+sinθt2)dt.

Commented by math khazana by abdo last updated on 28/Jun/18

we have F^′ (x)= ∫_0 ^1    (t^2 /(1+xt^2 ))dt  =(1/x) ∫_0 ^1    ((xt^2  +1 −1)/(xt^2  +1))dt  =(1/x)  −(1/x) ∫_0 ^1     (dt/(1+xt^2 ))   so if 0<x<1changement (√x)t=u give  ∫_0 ^1    (dt/(1+xt^2 ))  = ∫_0 ^(√x)    (1/(1+u^2 ))  (du/(√x))  =(1/(√x)) arctan((√x)) ⇒  F^′ (x)= (1/x) −((arctan((√x)))/(x(√x))) ⇒  F(x) = ∫_1 ^x   (dt/t)  − ∫_1 ^x    ((arctan((√t)))/(t(√t)))dt +c  =ln(x) −∫_1 ^x    ((arctan((√t)))/(t(√t)))dt +c but chang.(√t)=u  give ∫_1 ^x   ((arctan((√t)))/(t(√t)))dt =∫_1 ^(√x)     ((arctan(u))/(u^2 .u)) 2u du  =2 ∫_1 ^(√x)   ((arctan(u))/u^2 ) du   by parts  ∫_1 ^(√x)    ((arctanu)/u^2 ) du =  [−(1/u) arctan(u)]_1 ^(√x)   +∫_1 ^(√x)    (1/(u(1+u^2 )))du = (π/4) −((arctan((√x)))/(√x))  + ∫_1 ^(√x) ( (1/u) −(u/(1+u^2 )))du  =(π/4) −((arctan((√x)))/(√x))  +[ln((u/(√(1+u^2 ))))]_1 ^(√x)   =(π/4) −((arctan((√x)))/(√x)) +ln(((√x)/(√(1+x)))) +ln((√2)) ⇒  F(x)= ln(x) −(π/2) +((2arctan((√x)))/(√x)) −2ln(((√x)/(√(1+x))))  −ln(2) +c  F(1)=∫_0 ^1 ln(1+t^2 )dt =−(π/2) +(π/2) −2ln((1/(√2)))  −ln(2) +c=c ⇒  F(x)= −(π/2)  +((2 arctan((√x)))/(√x))  +ln(1+x)−ln(2)  + ∫_0 ^1 ln(1+t^2 )dt  by parts  ∫_0 ^1  ln(1+t^2 )dt =[tln(1+t^2 )]_0 ^1  −∫_0 ^1  ((t 2t)/(1+t^2 ))dt  =ln(2) −2 ∫_0 ^1  ((1+t^2  −1)/(1+t^2 ))dt  =ln(2) −2 +2 ∫_0 ^1   (dt/(1+t^2 )) =ln(2) −2  +(π/2) ⇒  F(x)= ((2 arctan((√x)))/(√x)) +ln(1+x) −2 with 0<x<1

wehaveF(x)=01t21+xt2dt=1x01xt2+11xt2+1dt=1x1x01dt1+xt2soif0<x<1changementxt=ugive01dt1+xt2=0x11+u2dux=1xarctan(x)F(x)=1xarctan(x)xxF(x)=1xdtt1xarctan(t)ttdt+c=ln(x)1xarctan(t)ttdt+cbutchang.t=ugive1xarctan(t)ttdt=1xarctan(u)u2.u2udu=21xarctan(u)u2dubyparts1xarctanuu2du=[1uarctan(u)]1x+1x1u(1+u2)du=π4arctan(x)x+1x(1uu1+u2)du=π4arctan(x)x+[ln(u1+u2)]1x=π4arctan(x)x+ln(x1+x)+ln(2)F(x)=ln(x)π2+2arctan(x)x2ln(x1+x)ln(2)+cF(1)=01ln(1+t2)dt=π2+π22ln(12)ln(2)+c=cF(x)=π2+2arctan(x)x+ln(1+x)ln(2)+01ln(1+t2)dtbyparts01ln(1+t2)dt=[tln(1+t2)]0101t2t1+t2dt=ln(2)2011+t211+t2dt=ln(2)2+201dt1+t2=ln(2)2+π2F(x)=2arctan(x)x+ln(1+x)2with0<x<1

Commented by math khazana by abdo last updated on 28/Jun/18

if −1<x<0 we have F^′ (x)=(1/x) −(1/x) ∫_0 ^1    (dt/(1+xt^2 ))  ∫_0 ^1     (dt/(1+xt^2 )) =∫_0 ^1    (dt/(1−(−x)t^2 )) =_((√(−x))t=u)  ∫_0 ^(√(−x))    (1/(1−u^2 )) (du/(√(−x)))  =(1/(√(−x))) ∫_0 ^(√(−x))    (du/(1−u^2 )) =(1/(2(√(−x)))) ∫_0 ^(√(−x)) ( (1/(1+u)) +(1/(1−u)))du  = (1/(2(√(−x)))) [ln(((1+u)/(1−u)))]_0 ^(√(−x))  = (1/(2(√(−x)))) ln(((1+(√(−x)))/(1−(√(−x)))))⇒  F^′ (x) = (1/x) −(1/(2x(√(−x))))ln(((1+(√(−x)))/(1−(√(−x))))) ⇒  F(x)= ln(−x)  − ∫_1 ^x     (1/(2t(√(−t)))) ln(((1+(√(−t)))/(1−(√(−t)))))dt +c  ...be continued...

if1<x<0wehaveF(x)=1x1x01dt1+xt201dt1+xt2=01dt1(x)t2=xt=u0x11u2dux=1x0xdu1u2=12x0x(11+u+11u)du=12x[ln(1+u1u)]0x=12xln(1+x1x)F(x)=1x12xxln(1+x1x)F(x)=ln(x)1x12ttln(1+t1t)dt+c...becontinued...

Commented by math khazana by abdo last updated on 28/Jun/18

2) ∫_0 ^1 ln(1+(1/2)t^2 )dt =F((1/2))=((2arctan((1/(√2))))/(1/(√2))) +ln((3/2))  −2 =2(√2) arctan((1/(√2))) +ln(3)−ln(2) −2 .

2)01ln(1+12t2)dt=F(12)=2arctan(12)12+ln(32)2=22arctan(12)+ln(3)ln(2)2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com