Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60424 by Mr X pcx last updated on 20/May/19

let z ∈C and  ∣z∣<1  find  f(x)=∫_0 ^1 ln(1+zx)dx.

letzCandz∣<1findf(x)=01ln(1+zx)dx.

Commented by maxmathsup by imad last updated on 26/May/19

we have f(z) =∫_0 ^1 ln(1+zx)dx    ⇒f^′ (z) =∫_0 ^1  (x/(1+zx)) dx  =(1/z) ∫_0 ^1  ((1+zx−1)/(1+zx)) dx =(1/z) −(1/z) ∫_0 ^1   (dx/(1+zx))  =(1/z) −(1/z) ∫_0 ^1 (Σ_(n=0) ^∞  (−1)^n z^n x^n )dx =(1/z) −(1/z)Σ_(n=0) ^∞  (−1)^n z^n  ∫_0 ^1  x^n dx  =(1/z) −(1/z) Σ_(n=0) ^∞  (((−1)^n )/(n+1)) z^n   =(1/z) −(1/z){1+Σ_(n=1) ^∞  (((−1)^n )/(n+1))z^n }  =−Σ_(n=1) ^∞  (((−1)^n )/(n+1)) z^(n−1)  ⇒f(z) =−∫ (Σ_(n=1) ^∞  (((−1)^n )/(n+1))z^(n−1) )dz +c  =−Σ_(n=1) ^∞  (((−1)^n )/(n(n+1))) z^n  +c   we have  f(0) =0=c ⇒  f(z) =−Σ_(n=1) ^∞ (−1)^n {(1/n) −(1/(n+1))}z^n  =−Σ_(n=1) ^∞  (((−1)^n )/n) z^n  +Σ_(n=1) ^∞  (((−1)^n )/(n+1)) z^n    (((−1)^n )/n)z^n  =Σ_(n=1) ^∞  (((−z)^n )/n) =−ln(1+z)  Σ_(n=1) ^∞  (((−1)^n )/(n+1)) z^n  =(1/z) Σ_(n=1) ^∞  (((−1)^n )/(n+1)) z^(n+1)  =(1/z) Σ_(n=2) ^∞  (((−1)^(n−1) )/n) z^n   =(1/z){ Σ_(n=1) ^∞  (((−1)^(n−1) )/n)z^n   −z} =(1/z){ln(1+z) −z} =((ln(1+z))/z) −1 ⇒  f(z) = ln(1+z) +((ln(1+z))/z) −1 ⇒ f(z) =((z+1)/z)ln(1+z) −1.

wehavef(z)=01ln(1+zx)dxf(z)=01x1+zxdx=1z011+zx11+zxdx=1z1z01dx1+zx=1z1z01(n=0(1)nznxn)dx=1z1zn=0(1)nzn01xndx=1z1zn=0(1)nn+1zn=1z1z{1+n=1(1)nn+1zn}=n=1(1)nn+1zn1f(z)=(n=1(1)nn+1zn1)dz+c=n=1(1)nn(n+1)zn+cwehavef(0)=0=cf(z)=n=1(1)n{1n1n+1}zn=n=1(1)nnzn+n=1(1)nn+1zn(1)nnzn=n=1(z)nn=ln(1+z)n=1(1)nn+1zn=1zn=1(1)nn+1zn+1=1zn=2(1)n1nzn=1z{n=1(1)n1nznz}=1z{ln(1+z)z}=ln(1+z)z1f(z)=ln(1+z)+ln(1+z)z1f(z)=z+1zln(1+z)1.

Commented by maxmathsup by imad last updated on 26/May/19

the Q is find f(z) =∫_0 ^1 ln(1+zx)dx .

theQisfindf(z)=01ln(1+zx)dx.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com