All Questions Topic List
Set Theory Questions
Previous in All Question Next in All Question
Previous in Set Theory Next in Set Theory
Question Number 1616 by 123456 last updated on 27/Aug/15
letstwosetsA,Bandtake∣X∣thenumberofelementsofthesetX,themprooforgiveacounterexamplethatif∣A∪B∣=∞and∣A∩B∣=∞then∣A∣=∞and∣B∣=∞
Commented by 112358 last updated on 27/Aug/15
A∪B=A+B−A∩B⇒∣A∪B∣=∣A∣+∣B∣−∣A∩B∣∴∣A∩B∣+∣A∪B∣=∣A∣+∣B∣Bylogic,p→q≡∽q→∽p.So,proposethefollowingstatementsp:∣A∩B∣and∣A∪B∣arenon−finite.q:∣A∣and∣B∣arenon−finite.Thenonemayfinditeasiertoshowthat∽q→∽pratherthanp→qdirectly.Let∣A∣and∣B∣befinite.⇒∣A∣=n,∣B∣=mwheren,m∈Z+andn,marefinite.⇒∣A∪B∣+∣A∩B∣=m+n∵nandmarefinite⇒m+nisfinite⇒∣A∩B∣+∣A∪B∣isfinite∴∣A∩B∣=x,∣A∪B∣=ysothatx+y=m+nwithx,y∈Z+andarefinite.Thus,∣A∪B∣and∣A∩B∣arefinite.∵∽q→∽pthenwehavethatp→q.Hence,∣A∩B∣=∞and∣A∪B∣=∞impliesthat∣A∣=∞and∣B∣=∞.
Commented by 123456 last updated on 28/Aug/15
nice:Dthanks
Commented by Rasheed Ahmad last updated on 28/Aug/15
Appreciations!Goodapproach!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com