Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 213511 by universe last updated on 07/Nov/24

             lim_(n→∞)    [Σ_(r=1) ^n (1/2^r )]     where [•] greatest integer finction

limn[nr=112r]where[]greatestintegerfinction

Answered by issac last updated on 07/Nov/24

Σ_(h=1) ^M  2^(−h) ≤1  lim_(M→∞) Σ_(h=1) ^M  2^(−h) ≤1  but Σ_(h=1) ^∞  2^(−h) =1  cus 0.99999......=1  ⌊lim_(M→∞)  Σ_(h=1) ^M  2^(−h) ⌋=1

Mh=12h1limMMh=12h1buth=12h=1cus0.99999......=1limMMh=12h=1

Commented by mr W last updated on 07/Nov/24

the question is  lim_(n→∞) ⌊×⌋=?  not ⌊lim_(n→∞) ×⌋=?

thequestionislimn×=?notlimn×=?

Answered by lepuissantcedricjunior last updated on 09/Nov/24

lim_(n→+∞) [Σ_(r=1) ^n (1/2^r )]=lim_(n→+∞) [−1+Σ_(r=0) ^n (1/2^r )]  =lim_(n→+∞) [−1+((1−((1/2^(n+1) )))/(1−(1/2)))]  =lim_(n→+∞) [−1+2(1−2^(−(n+1)) )]  =[−1+2]=1

limn+[nr=112r]=limn+[1+nr=012r]=limn+[1+1(12n+1)112]=limn+[1+2(12(n+1))]=[1+2]=1

Commented by mr W last updated on 09/Nov/24

wrong!

wrong!

Answered by mr W last updated on 07/Nov/24

Σ_(r=1) ^n (1/2^r )=(((1/2)(1−(1/2^n )))/(1−(1/2)))=1−(1/2^n )<1, but >0  ⇒[Σ_(r=1) ^n (1/2^r )]=0  ⇒lim_(n→∞) [Σ_(r=1) ^n (1/2^r )]=lim_(n→∞) 0=0 ✓

nr=112r=12(112n)112=112n<1,but>0[nr=112r]=0limn[nr=112r]=lim0n=0

Commented by issac last updated on 07/Nov/24

Damn i was wrong

Damniwaswrong

Commented by universe last updated on 07/Nov/24

thanks sir

thankssir

Answered by Berbere last updated on 07/Nov/24

[x]<x  ⇒0≤[Σ_(r=1) ^n (1/2^r )]≤Σ_(r=1) ^n (1/2^r )=1−((1/2))^n <1  ⇒∀n∈N  [Σ(1/2^r )]=0

[x]<x0[nr=112r]nr=112r=1(12)n<1nN[Σ12r]=0

Commented by universe last updated on 07/Nov/24

thank you so much sir

thankyousomuchsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com