Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 161583 by cortano last updated on 19/Dec/21

  lim_(x→2)  ((1−sin (π/x))/(x^2 −4x+4)) =?   lim_(x→2)  ((x^3 −8+sin πx)/(2−x))=?   lim_(x→1)  ((x^2 −1)/(cos ((π/(x+1)))))=?

limx21sinπxx24x+4=?limx2x38+sinπx2x=?limx1x21cos(πx+1)=?

Commented by blackmamba last updated on 20/Dec/21

(1) lim_(x→2)  ((sin ((π/2))−sin ((π/x)))/((x−2)^2 ))        = lim_(x→2)  ((2cos (((πx+2π)/(4x)))sin (((πx−2π)/(4x))))/((x−2)^2 ))        = lim_(x→2)  ((2sin ((π/2)−(((πx+2π)/(4x))))sin (π/(4x))(x−2))/((x−2)^2 ))       = lim_(x→2)  ((2sin (π/(4x))(x−2) sin (π/(4x))(x−2))/((x−2)^2 ))     = ((2π^2 )/(64)) = (π^2 /(32))

(1)limx2sin(π2)sin(πx)(x2)2=limx22cos(πx+2π4x)sin(πx2π4x)(x2)2=limx22sin(π2(πx+2π4x))sinπ4x(x2)(x2)2=limx22sinπ4x(x2)sinπ4x(x2)(x2)2=2π264=π232

Answered by Ar Brandon last updated on 20/Dec/21

lim_(x→1) ((x^2 −1)/(cos((π/(x+1)))))=lim_(x→1) (((x+1)(x−1))/(cos((π/(x+1)))))=lim_(x→1) (((x+1)(x−1))/(sin((π/2)−(π/(x+1)))))  lim_(x→1) (((x+1)(x−1))/(sin(((π(x−1))/(2(x+1))))))=lim_(x→1) ((2(x+1)^2 )/π)∙(((π/2)(((x−1)/(x+1))))/(sin((π/2)(((x−1)/(x+1))))))  =lim_(x→1) ((2(x+1)^2 )/π)∙lim_(x→1) ((((π/2)(((x−1)/(x+1))))/(sin((π/2)(((x−1)/(x+1)))))))=(8/π)×1= determinant (((8/π)))

limx1x21cos(πx+1)=limx1(x+1)(x1)cos(πx+1)=limx1(x+1)(x1)sin(π2πx+1)limx1(x+1)(x1)sin(π(x1)2(x+1))=limx12(x+1)2ππ2(x1x+1)sin(π2(x1x+1))=limx12(x+1)2πlimx1(π2(x1x+1)sin(π2(x1x+1)))=8π×1=8π

Answered by Ar Brandon last updated on 20/Dec/21

lim_(x→2) ((x^3 −8+sinπx)/(2−x))=lim_(x→2) (((x−2)(x^2 +2x+4))/(2−x))+lim_(u→0) ((sin(π(2−u)))/u)  =−12+lim_(u→0) ((sin(−πu))/u)=−12−lim_(u→0) π∙((sin(πu))/(πu))=−(π+12)

limx2x38+sinπx2x=limx2(x2)(x2+2x+4)2x+limu0sin(π(2u))u=12+limu0sin(πu)u=12limu0πsin(πu)πu=(π+12)

Answered by mathmax by abdo last updated on 20/Dec/21

f(x)=((1−sin((π/x)))/(x^2 −4x+4))  changement (π/x)=t give x=(π/t)  f(x)=((1−sint)/((π^2 /t^2 )−((4π)/t)+4))=((t^2 (1−sint))/(π^2 −4πt +4t^2 ))   (t→(π/2))  =_(t−(π/2)=z)      (((z+(π/2))^2 (1−cosz))/(4(z+(π/2))^2 −4π(z+(π/2))+π^2 ))=Ψ(z) (z→0)  Ψ(z)∼(z^2 /2)×(((z+(π/2))^2 )/(4(z^2 +πz+(π^2 /4))−4πz−π^2 )) ⇒  Ψ(z)∼((z^2 (z+(π/2))^2 )/(2{4z^2 +4πz+π^2 −4πz−π^2 }))∼(1/8)(z+(π/2))^2   ⇒lim_(z→0) Ψ(z)=(1/8)(π^2 /4)=(π^2 /(32))=limf(x)

f(x)=1sin(πx)x24x+4changementπx=tgivex=πtf(x)=1sintπ2t24πt+4=t2(1sint)π24πt+4t2(tπ2)=tπ2=z(z+π2)2(1cosz)4(z+π2)24π(z+π2)+π2=Ψ(z)(z0)Ψ(z)z22×(z+π2)24(z2+πz+π24)4πzπ2Ψ(z)z2(z+π2)22{4z2+4πz+π24πzπ2}18(z+π2)2limz0Ψ(z)=18π24=π232=limf(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com