All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 19271 by Joel577 last updated on 08/Aug/17
limx→π(2−cos2x)22(1+cosx)(x−π)3
Answered by ajfour last updated on 09/Aug/17
=limx→π{[1+sin2(π−x)]1sin2(π−x)}4cos(x2)×sin2(π−x)(π−x)2×−1(π−x)=elimx→π∣4sin(π2−x2)∣×sin2(π−x)(π−x)2×−1(π−x)=e−limx→π∣4sin(π2−x2)∣2(π2−x2)R.H.L.=e2;L.H.L.=e−2=1e2.sothelimitdontexistatx=π.
Commented by Joel577 last updated on 09/Aug/17
CanuexplainwithmoredetailSir?Idontunderstandfromthesecondrow
Commented by ajfour last updated on 09/Aug/17
sincelimx→0(1+x)1/x=eherewehavelimx→π[1+sin2(π−x)]1sin2(π−x)=e..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com