Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 66316 by mathmax by abdo last updated on 12/Aug/19

lim_(x→(π/2))    ((ln(sin^2 x))/(((π/2)−x)^2 ))

limxπ2ln(sin2x)(π2x)2

Commented by mathmax by abdo last updated on 21/Aug/19

let f(x) =((ln(sin^2 x))/(((π/2)−x)^2 ))  changement (π/2)−x =t give  lim_(x→(π/2))   f(x) =lim_(t→0)    ((ln(cos^2 t))/t^2 ) =lim_(t→0)  ((ln(((1+cos(2t))/2)))/t^2 )  but  ln(((1+cos(2t))/2)) =ln(1+cos(2t))−ln(2)  cos(2t)∼1−2t^2  +o(t^2 ) ⇒1+cos(2t)∼2−2t^2  ⇒  ln(1+cos(2t))∼ln(2)+ln(1−t^2 )∼ln(2)−t^2  ⇒  ((ln(((1+cos(2t))/2)))/t^2 ) ∼−1 (t→o) ⇒lim_(x→(π/2))   f(x)=−1

letf(x)=ln(sin2x)(π2x)2changementπ2x=tgivelimxπ2f(x)=limt0ln(cos2t)t2=limt0ln(1+cos(2t)2)t2butln(1+cos(2t)2)=ln(1+cos(2t))ln(2)cos(2t)12t2+o(t2)1+cos(2t)22t2ln(1+cos(2t))ln(2)+ln(1t2)ln(2)t2ln(1+cos(2t)2)t21(to)limxπ2f(x)=1

Answered by kaivan.ahmadi last updated on 12/Aug/19

=^(hop)  lim_(x→(π/2))  ((sin2x)/(−2sin^2 x((π/2)−x)))=^(hop)   lim_(x→(π/2))  ((2cos2x)/(−2sin2x((π/2)−x)+2sin^2 x))=  ((−2)/2)=−1

=hoplimxπ2sin2x2sin2x(π2x)=hoplimxπ22cos2x2sin2x(π2x)+2sin2x=22=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com