Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 169004 by mathlove last updated on 23/Apr/22

lim_(x→(π/2)) (((sinx−1)/(x−(π/2))))=?

limxπ2(sinx1xπ2)=?

Commented by infinityaction last updated on 23/Apr/22

           (let)p        =      lim_(x→(π/2))  (((sin x−sin (π/2))/(x−(π/2))))               p    =       lim_(x→(π/2))  {((2cos (((x+π/2)/2))sin (((x−π/2)/2)))/(2(((x−π/2)/2))))}            p    =     cos (π/2)            p      =    0

(let)p=limxπ2(sinxsinπ2xπ2)p=limxπ2{2cos(x+π/22)sin(xπ/22)2(xπ/22)}p=cosπ2p=0

Commented by mathlove last updated on 23/Apr/22

sir  sinp+sinq=2cos((p+q)/2)∙sin((p−q)/2)

sirsinp+sinq=2cosp+q2sinpq2

Commented by mr W last updated on 23/Apr/22

lim_(x→(π/2)) (((sinx−1)/(x−(π/2))))  =lim_(x→(π/2)) (((sinx−sin (π/2))/(x−(π/2))))  =(sin x)′∣_(x=(π/2))   =(cos x)∣_(x=(π/2))   =0

limxπ2(sinx1xπ2)=limxπ2(sinxsinπ2xπ2)=(sinx)x=π2=(cosx)x=π2=0

Answered by qaz last updated on 23/Apr/22

lim_(x→(π/2)) ((sin x−1)/(x−(π/2)))=lim_(x→(π/2)−(π/2)) ((sin (x+(π/2))−1)/((x+(π/2))−(π/2)))=lim_(x→0) ((cos x−1)/x)=lim_(x→0) ((−(1/2)x^2 )/x)=0

limxπ2sinx1xπ2=limxπ2π2sin(x+π2)1(x+π2)π2=limx0cosx1x=limx012x2x=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com