Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 55592 by gunawan last updated on 27/Feb/19

lim_(x→π/3)  ((cos x−sin (π/6))/((π/6)−(x/2)))=..

limxπ/3cosxsinπ6π6x2=..

Commented by maxmathsup by imad last updated on 27/Feb/19

let A(x)=((cosx−sin((π/6)))/((π/6)−(x/2))) ⇒ A(x)=6((cosx−(1/2))/(π−3x)) =3  ((2cosx−1)/(3((π/3)−x)))  =((1−2cosx)/(x−(π/3)))   changement x−(π/3) =t give lim_(x→(π/3)) A(x)  =lim_(t→0)      ((1−2cos(t+(π/3)))/t) =lim_(t→0)   ((1−2{(1/2)cost −((√3)/2)sint)})/t)  =lim_(t→0)   ((1−cost +(√3)sint)/t) =lim_(t→0)   ((1−cost)/t) +lim_(t→0)   (√3)((sint)/t)  but cost ∼1−(t^2 /2) ⇒((1−cost)/t) ∼ (t/2) →0(t→0)  also sint ∼t ⇒lim_(t→0)  ((sint)/t) =1 ⇒  lim_(x→(π/3))    A(x)=(√3).

letA(x)=cosxsin(π6)π6x2A(x)=6cosx12π3x=32cosx13(π3x)=12cosxxπ3changementxπ3=tgivelimxπ3A(x)=limt012cos(t+π3)t=limt012{12cost32sint)}t=limt01cost+3sintt=limt01costt+limt03sinttbutcost1t221costtt20(t0)alsosinttlimt0sintt=1limxπ3A(x)=3.

Answered by kaivan.ahmadi last updated on 27/Feb/19

hopital  lim_(x→(π/3)) ((−sinx)/(−(1/2)))=lim_(x→(π/3)) 2sinx=2sin(π/3)=2×((√3)/2)=(√3)

hopitallimxπ3sinx12=limxπ32sinx=2sinπ3=2×32=3

Answered by math1967 last updated on 27/Feb/19

lim_(x→(π/3)) ((cosx−cos((π/2)−(π/6)))/((π/6)−(x/2)))   lim_(x→(π/3))  ((2sin((π/6)−(x/2))sin((x/2)+(π/6)))/((π/6)−(x/2))) ★  2×1×sin((π/6)+(π/6))=2×1×((√3)/2)=(√3)   ★lim_(((π/6)−(x/2))→0)  ((sin((π/6)−(x/2)))/(((π/6)−(x/2))))=1  ∵x→(π/3)  ∴(x/2)→(π/6) ∴((π/6)−(x/2))→0

limxπ3cosxcos(π2π6)π6x2limxπ32sin(π6x2)sin(x2+π6)π6x22×1×sin(π6+π6)=2×1×32=3lim(π6x2)0sin(π6x2)(π6x2)=1xπ3x2π6(π6x2)0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com