All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 55592 by gunawan last updated on 27/Feb/19
limx→π/3cosx−sinπ6π6−x2=..
Commented by maxmathsup by imad last updated on 27/Feb/19
letA(x)=cosx−sin(π6)π6−x2⇒A(x)=6cosx−12π−3x=32cosx−13(π3−x)=1−2cosxx−π3changementx−π3=tgivelimx→π3A(x)=limt→01−2cos(t+π3)t=limt→01−2{12cost−32sint)}t=limt→01−cost+3sintt=limt→01−costt+limt→03sinttbutcost∼1−t22⇒1−costt∼t2→0(t→0)alsosint∼t⇒limt→0sintt=1⇒limx→π3A(x)=3.
Answered by kaivan.ahmadi last updated on 27/Feb/19
hopitallimx→π3−sinx−12=limx→π32sinx=2sinπ3=2×32=3
Answered by math1967 last updated on 27/Feb/19
limx→π3cosx−cos(π2−π6)π6−x2limx→π32sin(π6−x2)sin(x2+π6)π6−x2★2×1×sin(π6+π6)=2×1×32=3★lim(π6−x2)→0sin(π6−x2)(π6−x2)=1∵x→π3∴x2→π6∴(π6−x2)→0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com