Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 179366 by mathlove last updated on 28/Oct/22

lim_(x→π) ((sin(x/2)−1)/(x−π))=?

limxπsinx21xπ=?

Commented by mahdipoor last updated on 28/Oct/22

=D_x (sin(x/2))_(x=π) =(1/2)cos((x/2))_(x=π) =0

=Dx(sinx2)x=π=12cos(x2)x=π=0

Commented by mathlove last updated on 28/Oct/22

discraib answer??

discraibanswer??

Commented by mr W last updated on 29/Oct/22

lim_(x→π) ((sin(x/2)−1)/(x−π))  =lim_(x→π) ((sin(x/2)−sin (π/2))/(x−π)) ← derivative of sin (x/2)  =(sin (x/2))′∣_(x=π)   =((1/2) cos (x/2))∣_(x=π)   =(1/2) cos (π/2)  =0

limxπsinx21xπ=limxπsinx2sinπ2xπderivativeofsinx2=(sinx2)x=π=(12cosx2)x=π=12cosπ2=0

Commented by mathlove last updated on 29/Oct/22

tanks

tanks

Commented by CElcedricjunior last updated on 29/Oct/22

lim_(x→𝛑) ((sin(x/2)−1)/(x−𝛑))=(0/0)=FI  to apply hospital   ⇔lim_(x→𝛑) ((sin(x/2)−1)/(x−𝛑))=lim_(x→𝛑) (((1/2)cos(x/2))/1)=0  lim_(x→𝛑) ((sin(x/2)−1)/(x−𝛑))=0  ...........le celebre cedric jinior......

limxπsinx21xπ=00=FItoapplyhospitallimxπsinx21xπ=limxπ12cosx21=0limxπsinx21xπ=0...........lecelebrecedricjinior......

Answered by a.lgnaoui last updated on 28/Oct/22

lim_(x→π) (1/2)×(((sin (x/2)−sin (π/2))/((x/2)−(π/2))))=(1/2)×((d(sin (x/2))_(x=π/2) )/dx)=(1/4)cos( (π/4) )=(1/4)×((√2)/2)=((√2)/8)

limxπ12×(sinx2sinπ2x2π2)=12×d(sinx2)x=π/2dx=14cos(π4)=14×22=28

Commented by Acem last updated on 29/Oct/22

fix (sin θ)′

fix(sinθ)

Answered by cortano1 last updated on 29/Oct/22

 lim_(x→π)  ((sin (x/2)−1)/(x−π))    let x−π=y ⇒x=π+y   L=lim_(y→0)  ((sin ((π/2)+(y/2))−1)/y)       =lim_(y→0)  ((cos (y/2)−1)/y)       =lim_(y→0)  ((−sin^2 ((y/2)))/((cos (y/2)+1)y))      = −lim_(y→0)  ((sin ((y/2)))/y) . lim_(y→0)  ((sin ((y/2)))/(cos ((y/2))+1))     =−(1/2)×0 = 0

limxπsinx21xπletxπ=yx=π+yL=limy0sin(π2+y2)1y=limy0cosy21y=limy0sin2(y2)(cosy2+1)y=limy0sin(y2)y.limy0sin(y2)cos(y2)+1=12×0=0

Commented by mathlove last updated on 29/Oct/22

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com