Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 174374 by Best1 last updated on 31/Jul/22

lim_(x→∞) (((x+3)/(x−2)))^x

limx(x+3x2)x

Answered by LEKOUMA last updated on 31/Jul/22

lim_(x→∞) [f(x)]^(g(x))   lim_(x→∞) f(x)=1 et lim_(x→∞) g(x)=∞  lim_(x→∞) [f(x)]^(g(x)) =1^∞ (F.I)  lim_(x→∞) [f(x)]^(g(x)) =e^(lim_(x→∞) [f(x)−1]g(x))   lim_(x→∞) (((x+3)/(x−2)))^x =1^∞ (F.I)  e^(lim_(x→∞) (((x+3)/(x−2))−1)(x)) =e^(lim_(x→∞) (((x+3−1(x−2))/(x−2)))(x))   =e^(lim_(x→∞) (((x+3−x+2)/(x−2)))(x)) =e^(lim_(x→∞) ((5/(x−2)))(x))   =e^(lim_(x→∞) ((5x)/(x−2))) =e^(lim_(x→∞) ((5x)/x)) =e^(lim_(x→∞) 5) =e^5   Donc: lim_(x→∞) (((x+3)/(x−2)))^x =e^5

limx[f(x)]g(x)limxf(x)=1etlimxg(x)=limx[f(x)]g(x)=1(F.I)limx[f(x)]g(x)=elimx[f(x)1]g(x)limx(x+3x2)x=1(F.I)elimx(x+3x21)(x)=elimx(x+31(x2)x2)(x)=elimx(x+3x+2x2)(x)=elimx(5x2)(x)=elimx5xx2=elimx5xx=elim5x=e5Donc:limx(x+3x2)x=e5

Commented by Best1 last updated on 31/Jul/22

lim_(x→∞) (((x+3)/(x−2)))^x     A.(1/e)  B.1  C.e    D.e^5   thank you very much

limx(x+3x2)xA.1eB.1C.eD.e5thankyouverymuch

Commented by Best1 last updated on 31/Jul/22

thanks

thanks

Answered by CElcedricjunior last updated on 31/Jul/22

lim_(x→∞) (((x+3)/(x−2)))^x =1^∞ =FI  on a :((x+3)/(x−2))=(((x−2)+5)/(x−2))=1+(5/(x−2))  posons (5/(x−2))=a=>x=(5/a)+2  qd : { ((x−>∞^� )),((a−>0)) :}  lim_(x→∞) (((x+3)/(x−2)))^x =lim_(a→0) (1+a)^((5/a)+2)   =lim_(a→0) e^(((5ln(1+a))/a)+2ln(1+a)) =e^5   caslim_(x→0) ((ln(1+x))/x)=lim_(x→0) ((ln(1+x)−ln(1))/(x−0))=(ln(1+x))′(0)=(1/(1+(0)))=1      .....le  ce^� le^� bre cedric junior.......99

limx(x+3x2)x=1=FIona:x+3x2=(x2)+5x2=1+5x2posons5x2=a=>x=5a+2qd:{x>`a>0limx(x+3x2)x=lima0(1+a)5a+2=lima0e5ln(1+a)a+2ln(1+a)=e5caslimx0ln(1+x)x=limx0ln(1+x)ln(1)x0=(ln(1+x))(0)=11+(0)=1.....lecel´ebre`cedricjunior.......99

Terms of Service

Privacy Policy

Contact: info@tinkutara.com